CS229: Machine Learning

Spring 2021


Course Description   This course provides a broad introduction to machine learning and statistical pattern recognition. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs, practical advice); reinforcement learning and adaptive control. The course will also discuss recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing.

Course Information

Time and Location
Mon, Wed 10:00 AM – 11:20 AM on zoom.
Contact and Communication
Due to a large number of inquiries, we encourage you to read the Logistics/FAQ page for commonly asked questions first, before reaching out to the course staff.
This quarter we will be using Ed as the course forum.
  • All official announcements and communication will happen over Ed.
  • Any questions regarding course content and course organization should be posted on Ed. You are strongly encouraged to answer other students' questions when you know the answer.
  • If there are private matters specific to you (e.g special accommodations, requesting alternative arrangements etc.), please create a private post on Ed.
  • For longer discussions with TAs, please attend office hours.
  • TA office hours can be found on Canvas. For the course calendar, see the Syllabus.
  • Before the beginning of the course, please contact the course coordinator Amelie Byun for logistical questions (ideally after consulting the FAQ page)

Teaching Assistants