Evaluation Metrics CS229

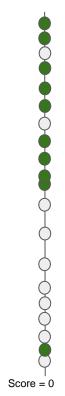
Yining Chen (Adapted from slides by Anand Avati) May 1, 2020

Topics

- Why are metrics important?
- Binary classifiers
 - Rank view, Thresholding
- Metrics
 - Confusion Matrix
 - Point metrics: Accuracy, Precision, Recall / Sensitivity, Specificity, F-score
 - Summary metrics: AU-ROC, AU-PRC, Log-loss.
- Choosing Metrics
- Class Imbalance
 - Failure scenarios for each metric
- Multi-class

Why are metrics important?

- Training objective (cost function) is only a proxy for real world objectives.
- Metrics help capture a business goal into a quantitative target (not all errors are equal).
- Helps organize ML team effort towards that target.
 - Generally in the form of improving that metric on the dev set.
- Useful to quantify the "gap" between:
 - Desired performance and baseline (estimate effort initially).
 - Desired performance and current performance.
 - Measure progress over time.
- Useful for lower level tasks and debugging (e.g. diagnosing bias vs variance).
- Ideally training objective should be the metric, but not always possible. Still, metrics are useful and important for evaluation.


Binary Classification

- x is input
- y is binary output (0/1)
- Model is $\hat{y} = h(x)$
- Two types of models
 - Models that output a categorical class directly (K-nearest neighbor, Decision tree)
 - Models that output a real valued score (SVM, Logistic Regression)
 - Score could be margin (SVM), probability (LR, NN)
 - Need to pick a threshold
 - We focus on this type (the other type can be interpreted as an instance)

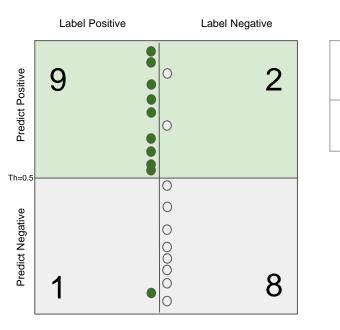
Score based models

Score = 1

٠	Positive example
0	Negative example

Example of Score: Output of logistic regression. For most metrics: Only ranking matters. If too many examples: Plot class-wise histogram.

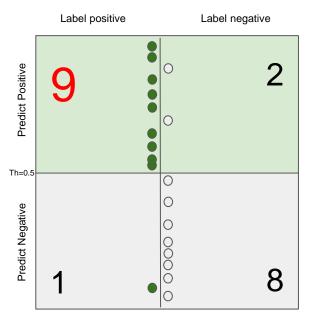
positive examples


Prevalence =

positive examples +
negatives examples

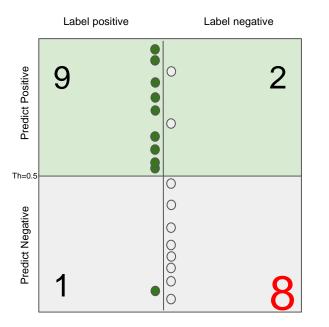
Threshold -> Classifier -> Point Metrics

Point metrics: Confusion Matrix

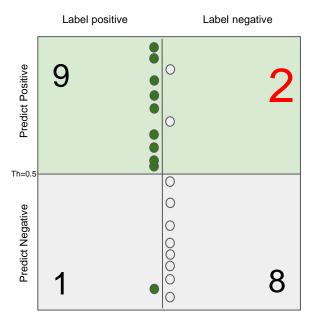

Th 0.5

Properties:

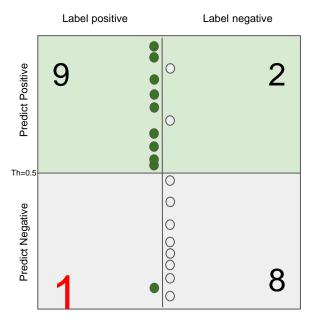
- Total sum is fixed (population).
- Column sums are fixed (class-wise population).
- Quality of model & threshold decide how columns are split into rows.
- We want diagonals to be "heavy", off diagonals to be "light".


Point metrics: True Positives

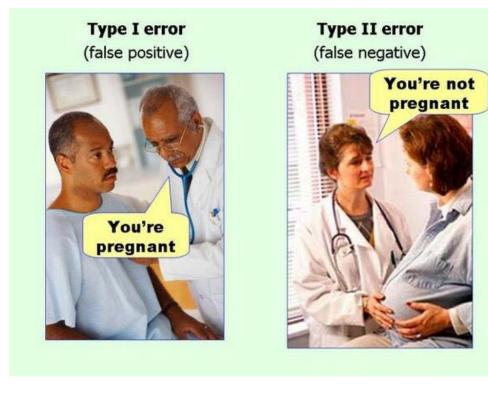
Th	TP	
0.5	9	


Point metrics: True Negatives

Th	TP	TN
0.5	9	8

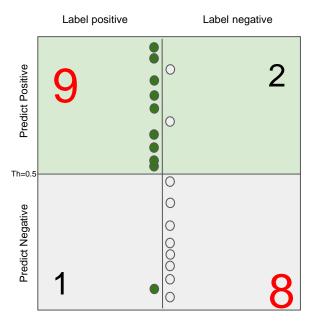

Point metrics: False Positives

Th	TP	TN	FP
0.5	9	8	2



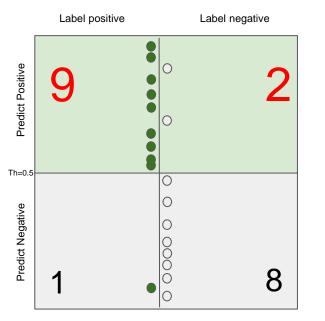
Point metrics: False Negatives

Th	TP	TN	FP	FN
0.5	9	8	2	1


FP and FN also called Type-1 and Type-2 errors

Could not find true source of image to cite

Point metrics: Accuracy



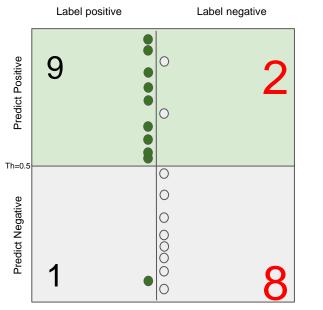
Th	TP	TN	FP	FN	Acc
0.5	9	8	2	1	.85

Equivalent to 0-1 Loss!

Point metrics: Precision

Th	TP	TN	FP	FN	Acc	Pr
0.5	9	8	2	1	.85	.81

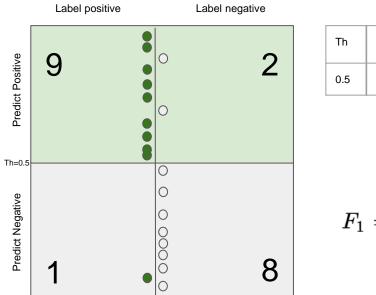
Point metrics: Positive Recall (Sensitivity)



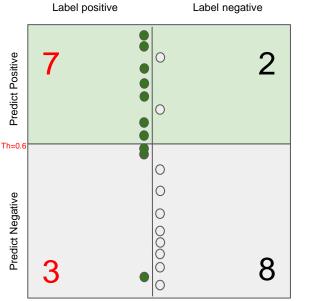
٦	Гh	TP	TN	FP	FN	Acc	Pr	Recall
C).5	9	8	2	1	.85	.81	.9

Trivial 100% recall = pull everybody above the threshold. Trivial 100% precision = push everybody below the threshold except 1 green on top. (Hopefully no gray above it!)

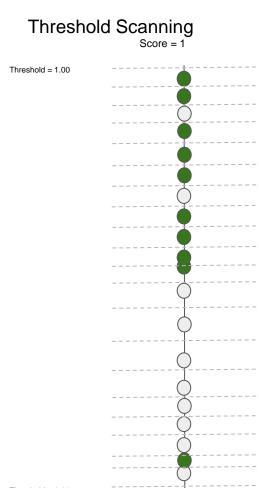
Striving for good precision with 100% recall = pulling up the lowest green as high as possible in the ranking. Striving for good recall with 100% precision = pushing down the top gray as low as possible in the ranking.


Point metrics: Negative Recall (Specificity)

Th	TP	TN	FP	FN	Acc	Pr	Recall	Spec
0.5	9	8	2	1	.85	.81	.9	0.8


Point metrics: F1-score

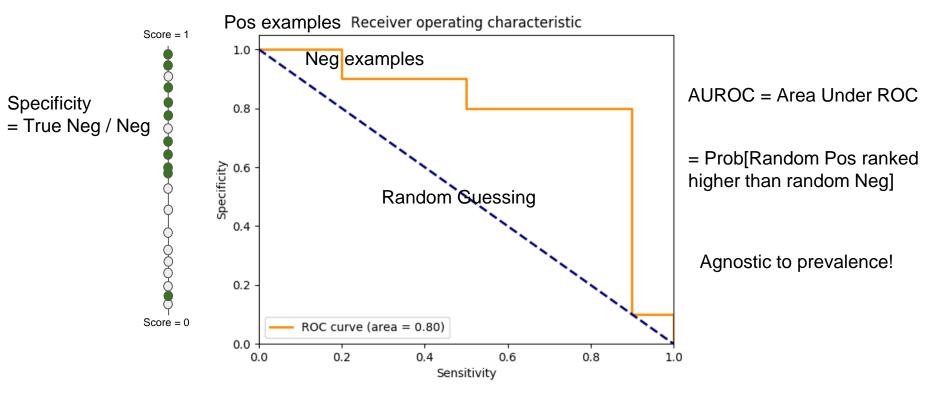
Th	TP	TN	FP	FN	Acc	Pr	Recall	Spec	F1
0.5	9	8	2	1	.85	.81	.9	.8	.857


$$F_1 = \left(rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}}
ight) = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}.$$

Point metrics: Changing threshold

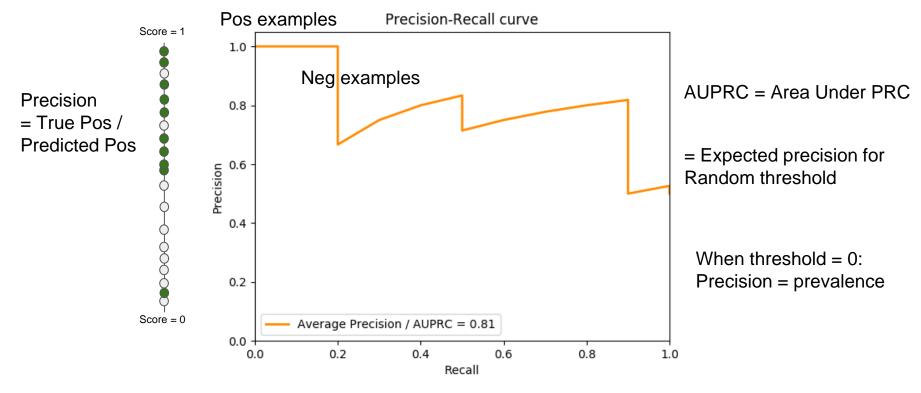
Th	TP	TN	FP	FN	Acc	Pr	Recall	Spec	F1
0.6	7	8	2	3	.75	.77	.7	.8	.733

effective thresholds = # examples + 1



Threshold	TP	ΤN	FP	FN	Accuracy	Precision	Recall	Specificity	F1
1.00	0	10	0	10	0.50	1	0	1	0
0.95	1	10	0	9	0.55	1	0.1	1	0.182
0.90	2	10	0	8	0.60	1	0.2	1	0.333
0.85	2	9	1	8	0.55	0.667	0.2	0.9	0.308
0.80	3	9	1	7	0.60	0.750	0.3	0.9	0.429
0.75	4	9	1	6	0.65	0.800	0.4	0.9	0.533
0.70	5	9	1	5	0.70	0.833	0.5	0.9	0.625
0.65	5	8	2	5	0.65	0.714	0.5	0.8	0.588
0.60	6	8	2	4	0.70	0.750	0.6	0.8	0.667
0.55	7	8	2	3	0.75	0.778	0.7	0.8	0.737
0.50	8	8	2	2	0.80	0.800	0.8	0.8	0.800
0.45	9	8	2	1	0.85	0.818	0.9	0.8	0.857
0.40	9	7	3	1	0.80	0.750	0.9	0.7	0.818
0.35	9	6	4	1	0.75	0.692	0.9	0.6	0.783
0.30	9	5	5	1	0.70	0.643	0.9	0.5	0.750
0.25	9	4	6	1	0.65	0.600	0.9	0.4	0.720
0.20	9	3	7	1	0.60	0.562	0.9	0.3	0.692
0.15	9	2	8	1	0.55	0.529	0.9	0.2	0.667
0.10	9	1	9	1	0.50	0.500	0.9	0.1	0.643
0.05	10	1	9	0	0.55	0.526	1	0.1	0.690
0.00	10	0	10	0	0.50	0.500	1	0	0.667

Threshold = 0.00


Score = 0

Summary metrics: Rotated ROC (Sen vs. Spec)

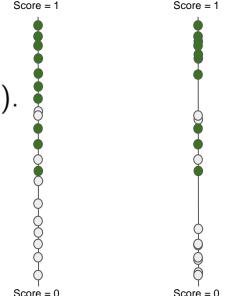
Sensitivity = True Pos / Pos


Summary metrics: PRC (Recall vs. Precision)

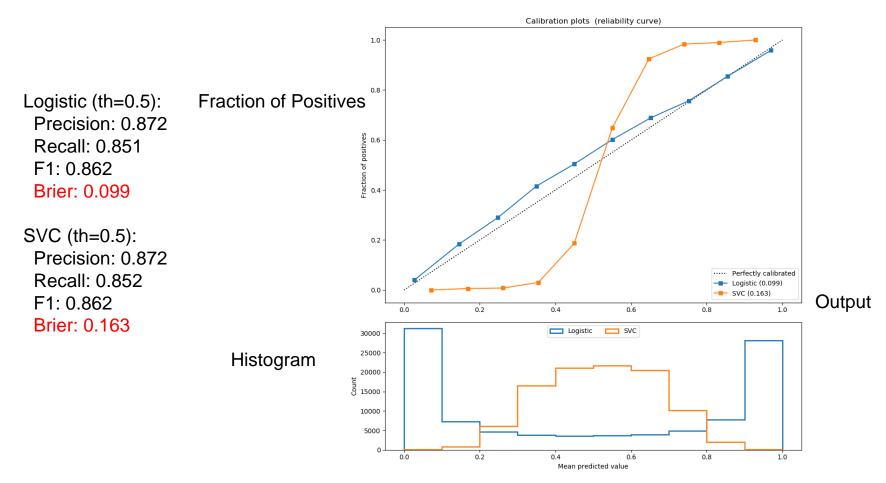
Recall = Sensitivity = True Pos / Pos

Summary metrics:

Two models scoring the same data set. Is one of them better than the other?


Summary metrics: Log-Loss vs Brier Score

• Same ranking, and therefore the same AUROC, AUPRC, accuracy!


Log Loss =
$$\frac{1}{N} \sum_{i=1}^{N} -y_i \log \hat{y}_i - (1 - y_i) \log (1 - \hat{y}_i)$$
.

- Rewards confident correct answers, heavily penalizes confident wrong answers.
- One perfectly confident wrong prediction is fatal.
- -> Well-calibrated model
- **Proper** scoring rule: Minimized at $\hat{y} = y$

Brier Score =
$$\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Calibration vs Discriminative Power

Unsupervised Learning

- Log P(x) is a measure of fit in Probabilistic models (GMM, Factor Analysis)
 - High log P(x) on training set, but low log P(x) on test set is a measure of overfitting
 - Raw value of log P(x) hard to interpret in isolation
- K-means is trickier (because of fixed covariance assumption)

Class Imbalance

Symptom: Prevalence < 5% (no strict definition)

Metrics: May not be meaningful.

Learning: May not focus on minority class examples at all

(majority class can overwhelm logistic regression, to a lesser extent SVM)

What happen to the metrics under class imbalance?

Accuracy: Blindly predicts majority class -> prevalence is the baseline.

Log-Loss: Majority class can dominate the loss.

AUROC: Easy to keep AUC high by scoring most negatives very low.

AUPRC: Somewhat more robust than AUROC. But other challenges.

In general: Accuracy < AUROC < AUPRC

Score = 1 1% "Fraudulent" Specificity 1% = True Neg / Neg AUC = 98/99 98% Score = 0

Rotated ROC

Sensitivity = True Pos / Pos

Multi-class

- Confusion matrix will be N * N (still want heavy diagonals, light off-diagonals)
- Most metrics (except accuracy) generally analyzed as multiple 1-vs-many
- Multiclass variants of AUROC and AUPRC (micro vs macro averaging)
- Class imbalance is common (both in absolute and relative sense)
- Cost sensitive learning techniques (also helps in binary Imbalance)
 - \circ $\;$ Assign weights for each block in the confusion matrix.
 - Incorporate weights into the loss function.

Choosing Metrics

Some common patterns:

- High precision is hard constraint, do best recall (search engine results, grammar correction): Intolerant to FP
 - Metric: Recall at Precision = XX %
- High recall is hard constraint, do best precision (medical diagnosis): Intolerant to FN
 - Metric: Precision at Recall = 100 %
- Capacity constrained (by K)
 - Metric: Precision in top-K.

.

Thank You!