Evaluating Autoencoder Methods for
Building a Molecule Graph Autoencoder

Amelia Woodward {ameliawd}
CS229 Project (Spring 2020)
General Machine Learning/Physical Sciences
Mentors: Keiran Thompson' and Todd Martinez?
The Martinez Group, Stanford Department of Chemistry and SLAC PULSE Institute

Abstract— We wish to build an autoencoder for
molecules using molecule graphs (Molgraphs) as input.
To begin developing this, we assess existing graphical
autoencoding architectures for the purpose. By testing on
organic molecules from the GDB13 database, we find that
Kipf and Welling’s VGAE model is the most promising
model for development and can reconstruct some simple
organic molecules before a large hyperparameter search.
We will continue to explore VGAE as well as explore
adjusting this encoder and decoder architecture going
forward.

I. BACKGROUND

Motivation. Automated molecular design is highly
desired to accelerate chemical innovation across
industries, from pharmaceutical discovery to materials
design. The Martinez Group is currently developing
an automated synthesis planner for this purpose which
uses graphs of molecules. From hereon, let us call
these molecule graphs ’Molgraphs’. For use in the
synthesis planner and beyond, we want to build an
autoencoder for Molgraphs (Figure 2).

This paper evaluates existing autoencoding
techniques as applied to the task of autoencoding
Molgraphs. Particularly, we implement existing
graphical autoencoder deisgns and evaluate their graph
decoder architectures. Since one can never separate the
loss function from the network architecture, we also
analyze reconstruction loss used. This work acts as the
initial step to guide our development of an effective
autoencoder for Molgraphs.

*Many thanks to the Martinez Group especially Keiran and Todd
for their ongoing support and for access to GPUs. Thank you also
to Stefan Seritan for his vital help with Docker container woes.

Y Keiran Thompson is a lead Research Associate in the Martinez
Group whose impact on this project has been tremendous.

2 Todd Martinez is the the head of the Martinez Group and a
huge inspiration.

o, / Ethane
Molgraph /TS CH,

e
*—T

o
Latent Predictive tasks o
Representation -

; o

e.g. Property optimization

CHy

— b //
Molgraph ¢ FEthane

Fig. 1. Molgraph Autoenconder Design Overview [1]

Autoencoders. Broadly speaking, an autoencoder is
a feedforward neural network which, when trained
accurately, should return the same input as output.
Autoencoders have an encoder and a decoder.
The encoder maps the input to a latent space: a
vectorized representation of its input. Depending on
the encoding method, the latent space may be discrete
or continuous. If the latent space is continuous, we call
this a variational autoencoder (VAE). The decoder
maps the latent space to an output, which we desire
is the same as the input. In the context of encoding
a Molgraph, this means that ideally it takes in a
Molgraph and returns the same Molgraph (Figure 2).

Autoencoders, and particularly VAEs, are useful
in that their latent space may be used for downstream
machine learning tasks. In our context such tasks

include:

(1) Link prediction between reactions: Link prediction
in the context of synthesis planning means finding
possible new reaction pathways in a graphical web of
known reactions. This requires having some vectorized
representation of Molgraphs.

(2) Optimization for desired chemical properties.
Imagine there is some property you wish to optimize
in a drug’s design (perhaps you wish for it to have
strong binding affinity to a particular protein, or
to be highly polar in some area). In this scenario,
you would encode a known molecule (in Molgraph
form) that has similar properties to that which we
desire. You would then optimize the latent space for
the particular property you desire, and then decode
back to a Molgraph form, possibly uncovering a new
molecule closer to the desired property.

Autoencoding Molecules. Given the wide-
ranging uses of molecule autoencoders, they have
been a topic of open and expanding research and
development. Notably, the Aspuru-Guzik group present
a chemical VAE which accepts SMILES strings: a text
representation of molecules with specific rules (e.g.
carbon dioxide = ’O=C=0’ and ethane = *CC’)[2,3].
They encode SMILES strings to a latent space using a
variational autoencoder, and decode back to SMILES
strings. While this text autoencoder is a step forward,
the SMILES format misses rich spatial information
about molecules that may be captured by instead
feeding autoencoders with graphical representations
of molecules [4]. This is because molecule graphs
explicitly take into account bonding and connectivity
information. In general, nodes in a graph can represent
atoms and edges can represent bonding information
between atoms. Node and edge features can be
adjusted to account for known chemical information,
both at the atomic and bonding level. We expand on
the particular design of Molgraphs in the Methods
section.

Autoencoding Graphs While research into graph-
ical deep learning has exponentialized, there remain
challenges in autoencoding graphs, particularly in the
decoding step. Specific to VAEs, it is challenging to
take a discrete graphical structure, encode it into a
continuous latent space, then accurately decode back
to a discretized graphical structure.

Tackling this, Kipf and Welling pioneer a technique

Data Pre-Processing:

a_ [@
H /H H\ H c {
\/C\T/C\/ . . C’/H
H ~e” W —> o8 .
H | ™\
g
H—C—H
|
Isobutane Molgraph
G=(V, E)
Isobutane Text V = one-hot encoded atoms
Representation E = bond adjacency by
‘cc(oc’ covalent distance
(Networkx, RDKIT)
Fig. 2. Molgraph Preprocessing [7]

for variationally encoding graphs, called VGAE, ini-
tially demonstrating its use in large-graph link pre-
diction tasks, and see improvements compared with
a discretized graphical autoencoder (GAE) model[5].
They also see improvements on previously developed
embedding techniques including spectral clustering and
DeepWalk [5]. In addition, Simonovsky and Komadakis
make suggestions for adjustments to this structure spe-
cific to small graphs, coining their method GraphVAE
[6].

II. METHODS AND COMPONENTS

In summary, we implement GAE, VGAE and take
inspiration from graphVAE and our knowledge of small
molecule properties to design an adapted graphVAE.
After preprocessing molecules to Molgraphs, We train
the models on subdatasets taken from the publicly
available GDBI13 database. We first pre-process
these into Molgraphs. We evaluate the model’s
decoding abilities to reconstruct the data by comparing
reconstruction loss, L2-loss and average graph edit
distance. We then draw conclusions about how each
algorithm operates and where to take the direction of
development of an effective autoencoder.

Molgraphs. We define Molgraphs to be a graph
G = (V, E) of a molecule with V' being atoms in the
molecule and E being edges representing bonds. For
now there are no edge attributes, though these may
(and will likely be) added when building a more fine-
tuned model. For now, we wish to build the simplest
graphical model of a molecule possible. Edges are
marked to exist if the covalent distance between atoms
is less than some purpose-defined threshold (). In the
standard case this would be ~ 1.5 atomic radii, but

there may be cases when we would want this to be a
higher threshold (ie. when intramolecular properties
may be particularly important, so this is adjustable).
In this paper we restrict to using Molgraphs with
a = 1.5. We define what we believe to be the simplest
meaningful node attributes: a one-hot encoding of
atoms where each index in the array corresponds to a
particular atomic number (e.g. Hydrogen 'H’(atomic
number=1) has a 1 in the Oth index, Carbon ’'C’
(atomic number=6) has a 1 in the 5th index).

We use Networkx and RDKit to construct the
Molgraphs from a SMILES (text representation) input
of the molecule.

Autoencoding Methods

VGAE and GAE. [5] First we implement the
VGAE architecture presented by Kipf and Welling
[5]. Given a graph G = (V, E) with N = |V| nodes,
we can construct an adjacency matrix A € R™*" and
diagonal degree matrix D € R™* ™. Node features are
given in a N € R™? matrix, where d is the length
of the node featurization vectors. Latent variables are
summarized in matrix Z € R™/, where f is the
number of channels.

Kipf and Welling then define an inference model
for Z given X and A parameterized by a two-layer
graphical convolutional network (GCN). Specifically,

a(Z|1X, A) = L1q(Zi|X, A),
q(Zi| X, A) = N (zilpi, (o))
The two-layer GCN is
GCN(X,A) = A(AXWy)W,
with weight matrices to be updated: Wy, Ws. Here
A=D:2AD3,
p=GCN,(X,A),
logo = GCN,(X, A).
Here ReLU(.) = max(0, .).

The generative model takes a simple inner product
between latent variables:

p(A|1Z) = L I p(Aij |24, 25),

p(Aijlzi, 25) = (27 25)-

GAE Recon Loss Eolx,a [los(p(412)]

GAE
Discrete

Inner
Product

Decoder

1= GCNL(X, A),

Y
VGAE 4i-D 4D :,

wgo = GON,(X, A)
Recon Loss £, x 4 llog(p(A]2)] - KL(4(Z|X, A)|[p(2)).
Fig. 3. GAE/VGAE Architecture Overview

Here o(.) is the sigmoid function. To learn the
model, they optimize the variational lower bound £
with respect to weight matrices Wy, Wa:

Eq1x,4)[log(p(A|Z2)] — KL(q(Z|X, A)|[p(Z)).

Here, K'L[p(.)||q(.)]] is the Kullback-Leibler diver-
gence between p(.) and ¢(.) and

p(2) =TI, N(0, 1)

is the Gaussian prior. The difference between GAE
and VGAE is that for the GAE, instead of A, they
calculate A = 0(ZZ7) with Z = GCN(X, A) and
we do not include the KL loss in the learning step.

Adapting graphVAE. [7] The main difference be-
tween graphVAE and Kipf and Welling’s GVAE is that
graphVAE makes a restriction on the size of the graph
(a maximimum of k£ nodes, where n is the original
number of nodes and n < k) and output a probabilistic
fully connected graph of the form G = (A, E,F).
Here, A € R*** where node probabilities exist along
the diagonal and edge probabilities along the off-
diagonal. E € R™*™ ¢ is the edge attributes and node
attributes are in the matrix F' € R™*?. In this paper
we will just adapt A and F, since we are currently
not assigning any edge attributes to Molgraphs, and so
from hereon consider our adapted version.

In the decoding step, instead of using only an inner
product decoder like Kipf and Welling, they use a
multi-layer perceptron with a sigmoid activation func-
tion outputting A. We implement a fully connected
layer with soft-max activation functions outputting F.
We use a binary assignment matrix X € RFX™ for

Adapted graphVAE

graphVAE Recon Loss : —logp(Glz) = —Aalog p(A'|z) — Aplog p(£]2)

A
i 1

Multi- layer

Perceptron

Fig. 4. graphVAE Architecture Overview

graph matching, using the Hungarian Algorithm [8],
and then calculate a loss function:

—logp(G|z) = —Aalogp(A'|z) — Aplog p(F'|z)

Where \’s are all set to 1, A" = XAXT and F' =
XTF.

log(A'|z Z A . log Aa,a—l—(l—A;ﬂ) log1 — Aa’a)
1 ~ -
+— Z Al L log Agp+(1— !) logl — Aup),
k(k—1) ' '
a#b
log p(F|z) Z log FTF’
Dataset

We use the open-source GDB13 Database, available
from the University of Bern Department of Chemistry
[7]. GDBI13 is a multi-million molecule dataset
containing only feasible organic molecules. The
molecules in the database contain up to 13 atoms of
C (Carbon), O (Oxygen), N (Nitrogen), S (Sulfur) and
Cl (Chlorine). This means these molecules often have
more than 13 atoms as H (hydrogen) is not included
in the atom count to 13. These molecule are written
in SMILES (text) format, so we pre-process them to
Molgraphs and then to appropriate tensors for deep
learning.

We extract subsets of molecules with particular
size properties from this dataset in order to begin
evaluating and understanding how well training with
graph autoencoders on Molgraphs works. The details
of these subsets are specifically explained in the
Experiments section.

Metrics

We test on three main metrics: reconstruction loss

(during training and testing), L2 loss between
adjacency matrices and graph edit distance.

(1) The reconstruction loss is directly calculated
during training, validation and testing from the loss
functions defined in the Methods section. (Note that
this means we should not compare reconstruction loss
between models, but rather between traininc instances
of the same model type).

(2) L2-loss: Since we have different reconstruction
loss functions between models, we would like some
consistent way of comparing the quality of decodings.
Where A is the input adjacency matrix and A is the
decoded adjacency matrix, we first apply a threshold
to the output adjacency matrix A such that if in row ¢

.o~ (mean(A)+median(A)) ~ .
and column j, a;; < 5 , then ay; is
set to 0. We apply dynamic thresholding because the
direct output of Ais continuously probabilistic and we
need some way to discretize the adjacency matrix. Let
us call this thresholded A to be Aypyesn. Then over a
test set of size n, we calculate:

losspo = - AthreshnHQ-

1 n
ﬁ Z HAn
i=1
(3) Average Graph Edit Distance (GED): GED is
a measure of similarity between graphs used in graph
theory. Its formula for comparison between two graphs
is:
k

min Z c(e;)

CED(g1,92) = €P(g1,92)
s€k 1,92)

€1,€2;...

where P (g1, g2) is the set of all edit paths transforming
g1 into g9 and c(e) calculates the cost of each graph
edit operation. We then naively create an average graph
edit distance in the test set of

1
GEDaverage = EGEDn

We don’t believe this is a perfect metric: some
molecules, particularly vastly larger molecules are
likely to have much larger GEDs than a smaller
molecule that is coded incorrectly, so it is difficult
to determine what is actually going on using this
metric. However, it is a standard graph similarity metric
nonetheless, so we at least attempt to include it. In ad-
dition we will examine how the models code particular
molecules of interest (e.g. straight chained vs ringed
structures) in attempting to understand what is going
on.

Metric

6.4 8.5

GED 154 228 227

RL rest 2.00 1.98 1.98

L2 6.7 8.5 8.6

GED 154 228 227
graphVAE [{ g -2.75 -2.95 -2.94
(adapted)

L2 14.2 17.2 171

GED 155 228 227

Fig. 5. Experiment 1 Results

Metric 16 Channel 32 Channel 16 Channel 32 Channel

2 Conv 2 Conv 3 Conv 3 Conv

graphVAE
(adapted)

Fig. 6. Experiment 2 Results

III. EXPERIMENTS

We conduct the following experiments to better
understand how the models work and what is required
for them to train well. Note that at this stage, we really
don’t expect the models to perform stellarly. Instead
we are looking for the best step forward to effectively
build a Molgraph autoencoder.

Experiment 1. We first attempt to understand how
the models train on increasingly large molecules.
We use three training/val/test subsets extracted from
GDB13, each with (Train/Val/Test: 10K/1K/1K):

1. Up to 4 Carbon Molecules
2. Up to 6 Carbon Molecules
3. Up to 8 Carbon Molecules

We train on each of GAE, VGAE and adapted
graphVAE. For the hyperparameters,
we set the number of channels in the latent space
to 16. The number of epochs is 400. The learning

Train: Reconstruction Loss

125

115

110

Recon Loss

0.0 25 50 75 100 125 150 175 200

Epoch

graphVAE TRAINING

Train: Reconstruction Loss

-7.4

=1.5

Recon Loss

=16

00 25 50 75 100 125 150 175 200

Epoch

Fig. 7. Training: Reconstruction per Epoch, Experiment 2;
16 Channel, 2 Conv Experiment, VGAE training had learning rate
le-3, graphVAE training had learning rate le-4

\ o o / “\\\7/\// =

< = 2NN
= e Vs s==n

\,, / \,1 “’/ \c“/

Water Methane ‘Ethene’ ‘Benzene’
{ J
Y
(but promising in general shape!)
Fig. 8. VGAE Reconstructions of Simple Molecules

rate is 0.01 for GAE/VGAE (which we have deemed
appropriate from pre-trials) and the learning rate is
0.001 for the adapted graphVAE. We achieve the
results seen in Fig 5.

Experiment 2. After analyzing small datasets in
Experiment 1, we tried increasing the dataset size to
100K molecules. We restricted these experiments to
20 epochs. We then tried some simple hyperparameter
changes which we thought might improve the model
performance.

We tried using 16 and 32 channels in the latent space.
We also tried keeping 2 graphical convolutional layers,
and also adding a 3rd convolutional layer.

Plotting the reconstruction losses during training
we saw that each model is converging, in both
Experiments 1 and 2. GAE and VGAE take much
longer to converge and need more than 20 epochs,
and achieved much better results after the increase in
epochs in Experiment 1. Therefore, going forward we
will try using both the larger dataset and more epochs
when training GAE/VGAE.

While GAE/VGAE had smooth reconstruction loss
curves during training, graphVAE steeply decreased its
reconstruction loss before plateauing after the second
epoch. This same trend appeared in Experiment 2, even
when we reduced the learning rate to le-4 (Figure 7).
This means that we are likely in some way saturating
the model and need to try extensive hyperparameter
tuning (and potentially debugging) to improve the out-
comes of this model.

Autoencoding a variety of standard organic
molecules using the trained models, we found that
the model that worked best was VGAE trained
on 400 epochs for the up to 4 and 6 Carbons
datasets (see Figure 8). (Actually GAE worked
slightly better than VGAE with the same dataset and
trainig parameters, but since we care about finding
continuous representations of molecules, then we are
really wishing to compare VGAE and the adapted
graphVAE). We can effectively reconstruct some of
the most simple molecules such as water and methane.
We noticed that almost when the graph outputs are
incorrect, there is a tendency for the outputs to be
overly-connected graphs, and want to delve more
into why this is the case and possible decoding or
thresholding techniques that might help to alleviate
this. This also explains why the average graph edit
distance remains so high in Fig 5 and 6: if graphs are
very highly connected like benzene in figure 8, then
the graph edit distance of arbitrary test molecules is
likely to remain high.

We did not see a significant improvement in out-
comes by increasing the number of channels or adding
a convolutional layer. However, we would like to try
this experiment again on VGAE with more epochs of
training to come to a more informed conclusion on the
matter.

IV. OUTCOMES AND NEXT STEPS

We come to the following main conclusions and
outcomes towards the development of a molgraphVAE.
VGAE appears to be more flexible and have signifi-
cantly better Molgraph reconstruction outcomes (even
when not fully converged) than adapted graphVAE. We
will consider adding node and edge attribute features
to this model to explore further development.

Positively, all models are learning during training in
that their reconstruction loss is decreasing. To optimize,
we will conduct comprehensive hyperparameter search
to determine optimal learning rates, explore adding
many more convolutional layers. Especially, we will
uncover why graphVAE saturates after 1-2 epochs (may
lead to significantly improved results).

All models tend to over-draw edges and require
high thresholds in output adjacency matrix to recover
‘molecule-like’ outputs. We should explore why this
occurs and what thresholding techniques make the most
sense with these models.

We hypothesize that adding edge weights containing
bond order information may drastically help the model
learn. For instance bond order information contains
tells the model whether a carbon should be connecting
to 2,3 or 4 other atoms. Therefore, we will also try
training with bond orders.

REFERENCES

[1] Wang, L., Titov, A., McGibbon, R., Liu, F, Pande, V.,
Martinez, T. (2014). Discovering chemistry with an ab ini-
tio nanoreactor. Nature Chemistry, 6(12), 1044-1048. doi:
10.1038/nchem.2099.

[2] Gomez-Bombarelli, R. et al. (2018). Automatic Chemical
Design Using a Data-Driven Continuous Representation of
Molecules. ACS Central Science, 4(2), pp.268-276.

[3] https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

[4] Woodward, A. (2019) Machine Learning on Chemical Re-
action Networks: Summer Research Update. (My summer
research last year)

[5] Kipf and Welling. (2016). Variational Graph Autoencoders.
arXiv:1611.07308v1

[6] Simonovsky and Komadakis.(2018) graphVAE: Towards the
Generation of Small Graphs Using Variational Autoen-
coders.arXiv:1802.03480v1

[7]1 Reymond Research Group. (2007) GDB Database. University
of Bern http://gdb.unibe.ch/

[8] Peng, R. (2015) Hungarian Algorithm.
https://www.cc.gatech.edu/ rpeng/ 8434S15 hungarianAlgo-
rithm.pdf

V. RESOURCES

Deep Learning We used Pytorch and the Pytorch Geometric
library, as well as our own implementations of network
architectures to process Molgraph data and implement GAE,
VGAE and build adapted graphVAE from scratch.

