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Introduction
• Background: Fairness in machine learning is increasingly topical as machine learning 

algorithms are leveraged to predict convict recidivism, future ability to pay loans, and many 
other predictions which correct or not have the ability to influence individuals' lives for 
decades afterward. 

• What Fairness Means: Fairness in machine learning generally deals with some 
predefined groups (based on age, gender etc.) in the dataset, and ensures no protected 
groups suffer drastic differences/discriminations in terms of some statistical measure (for 
example, the false positive rate).

• Problem: This often does not work as there can be combinations and intersections of 
protected groups (called subgroups) which can be discriminated against, still maintaining 
fairness in the protected group level.

Abstract
We build on recent theory of binary classification which treats arbitrary
combinations of protected classes fairly and prove analogous results in the
multi-class setting.

Figure: A toy example showing fairness 
gerrymandering. (Kearns et al., 2018)

In the above example, if race (’blue people’ and ‘green people’) and gender (‘male’ and ‘female’) are 
the protected groups, the false positive rate is equal for both race and gender groups. However, the 
model is very unfair for ‘blue females’ and ‘green males’ - combinatorial subgroups of our original 
groups.

Definitions
Statistical Parity Subgroup Fairness

Fix any classifier D, distribution P, group indicator g, threshold ! ∈ 0, 1 ,

&'( ), * = *,([) . = 1]

0'( ), 1, * = |3* 1 − 3* 1, ) |

where 3* (1) = *,7,([1 8 = 1] and 3* 1, ) = *,7,( 1 8 = 1 ) 8 = 1]

We say D satisfies !-statistical parity subgroup fairness with respect to P and 
g if we have,

&'( ), * 0'( ), 1, * ≤ !
We say D satisfies !-statistical parity subgroup fairness with respect to P if it 
satisfies the above condition for P and all ) ∈ :.

Previous Work
Kearns et al., 2018 provides an algorithm that can efficiently maintain fairness for any number of 
combinatorial subgroups of the originally protected subgroups, without hurting the classification 
error too much. They prove that:
Theorem: Fix any ;, < = [0, 1]. Then given an input of > data points and accuracy parameters ;, <, 
and access to Oracles CSC(H) and CSC(G), there exists an algorithm that runs in polynomial time, 
and with probability at least 1 − <, outputs a randomized classifier 1′ such that @,, 1A, * <
C*DEFGF(γ) + ;, and for any group indicator g, the fairness constraint below is satisfied:

&J( ), * 0J( ), 1A, * ≤ ! + C(;)

where we use false positive rate as our measure of statistical parity.

Figure: Group unfairness vs accuracy 
plot for empirical evaluation of the 
algorithm (Kearns et al.). The red line 
indicates results for the SUBGROUP 
algorithm developed by Kearns et al., 
the blue line indicates results for a 
model that only optimizes marginal 
subgroup fairness developed by 
Agarwal et al. Here unfairness means 
percentage of groups where the !-
fairness condition was violated.

Our Approach
We take the results from Kearns et al., and extend them from binary classification to multi-class classification 
settings, giving novel theoretical results. 

• We define subgroup fairness in the multi-class classification settings.

• We prove similar bounds as the binary classification settings but for algorithms that satisfy this definition of 
multi-class fairness.

• We prove runtime bounds on our algorithm.

Definition of Fairness in Multi-class Settings
Consider k-class classification. For any K ∈ {0, … , N − 1} and any classifier D, distribution P, group indicator g, threshold 
! ∈ 0, 1 , we define,

&'( ), * = *,([) . = 1]

0'( ), 1, *, K = |3* 1, K − 3* 1, ), K |

where 3* (1, K) = *,7,([1 8 = K] and 3* 1, ), K = *,7,( 1 8 = K ) 8 = 1]. We say D satisfies !-statistical parity 
subgroup fairness with respect to P if we have,

&'( ), * 0'( ), 1, *, K ≤ !
for all K ∈ {0, … , N − 1} and all group indicators g.
Theorem: Given n points to classify into k classes, accuracy parameters ;, <, and access to 
Oracles CSC(H) and CSC(G) for multi-class classification, there exists an algorithm that 
runs in time polynomial in <, ; and N , and with probability 1 − < outputs a randomized 
classifier 1′ such that @,, 1A, * < C*DEFGF(γ) + ;, and is γ fair, according to the multi-
class definition of fairness.  

Discussion: Supplementary results proven
• Uniform convergence: we prove that sufficiently large 

datasets yield empirical errors within any epsilon of the 
true error, and that for fixed P, this dataset grows only 
according to NQR)(N).

• Statistical parity uniform convergence: we prove that 
for each class K, &'( ), * 0'( ), 1, *, K from the multi-
class statistical parity definition can be taken arbitrarily 
close for true and empirical distributions, and the 
required dataset size grows analogously to the same 
uniform convergence difference

• Worst-case intractability: it follows from earlier results
in the field that no deterministic polynomial time 
algorithm can be guaranteed to find the optimal-
accuracy classifier which is some !-fair.  

Future Work
• Empirical validation: We plan to apply our results to multi-

class prediction on a fairness-sensitive dataset for which 
multi-class classification is more appropriate than binary, 
such as criminal risk-score generation

• Extension to ”fair” continuous output: Fairness concerns 
apply equally to continuous predictions, but is much harder 
to evaluate fairness.  We propose the objective of 
minimizing a function of this form, for > examples:

S ℎ = U
VWX

Y

Z
[\

]\

ℎV ; ^V ; _;

where ℎV gives a predicted probability density of output `V
and ^V is integrable, mapping predictions to costs, and S
gives the cost of ℎ, the set of ℎV, which represents a single 
element of the hypothesis class.  


