

# Recurrent Neural Physics Simulator

Andrew Nam, Joshua Ryu, Jinxiao Zhang Department of Psychology

# Background

Humans build probabilistic models of the world

- Humans receive uncertain sensory information and neural processes have inherent noise [8,10]
- Humans implicitly learn physical laws of motion and form intuitive physics engines [1,2]
- Humans conduct probabilistic mental simulations when reasoning about the world [3,8,9]

#### Neural Physics Engines

- Previous neural physics engine models only output a single deterministic prediction for each timestep [4-7]
- We allow the network to learn distributions (e.g., Gaussian ~  $N(\mu, \Sigma)$ ) for predicted states
- Predicted states could be either samples from predicted distributions or the distribution  $\mu$

# Task and Models

#### **Main Task**

- Plinko task: Shown the initial state of the plinko environment, predict the path of ball dropping
- Simulation:  $\{x_1, x_2, ..., x_T\} | x_0$

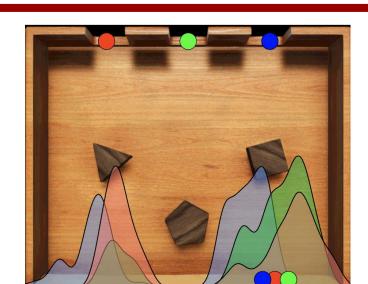
#### Inputs

- Environment: (x, y, r) for each obstacle
- State at t: position (px, py) and velocity (vx,vy) of ball at time t

Outputs: position and velocity of ball at time t+1 Loss function:

mean squared error: ||predicted - target||<sup>2</sup>

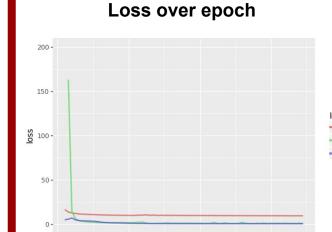
• Cross entropy for collision classifier:  $CE(y, \hat{y}) = -\sum y_k \log \hat{y_k}$ 

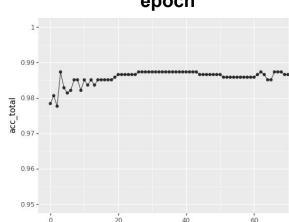


Fall with collisions

Prediction vs. simulation vs. target

### cGRU model results





Classification over

- epoch
  - - For the whole simulation of s(1), s(2), ... s(t) |s(0)

Free falls

#### Model converges quickly: error close to 0 for position and velocity prediction Collision classification has high accuracy (98-99%)

However, collisions are rare (~ 3%)

# Model prediction of s(t+1)|s(t) works well

- Model works well for free fall cases
- Model fails in collisions cases

# **Discussion**

- Physics simulation model learns a notion of continuity, giving smooth trajectories
- The models perform well in free falls but they have difficulty learning the collisions
- This may be due to the more free falls sample in the continuous time series drop
- This may be overcome guided simulations that simulates collisions more
- This may be due to discrete sampling of a continuous path.
- Combining various architectural choices may yield better results
  - Feeding outputs from a pre well-trained collision classifier to (r)GRU

#### **Future Directions**

- Compare simulation patterns to human eye-tracking data (trajectories, lingering)
- Use reinforcement learning to select informative simulations



Human eye-tracking data

### **Model Architectures**

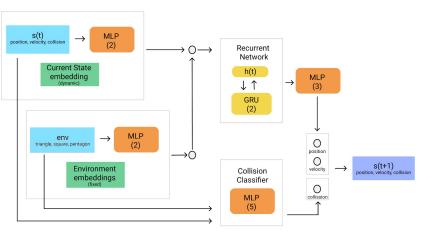
- Model 1: Gated Recurrent Unit + Collision Classifier (cGRU)
  - *Inputs embedder*: 2-layer MLP (ReLU activations)
  - Recurrent network: 2 hidden layers GRU
  - GRU outputs layer: 3-layer MLP (ReLU activations)
  - Collision classifier: 5-layer MLP (eLU activations)

#### Model 2: Relational GRU (rGRU)

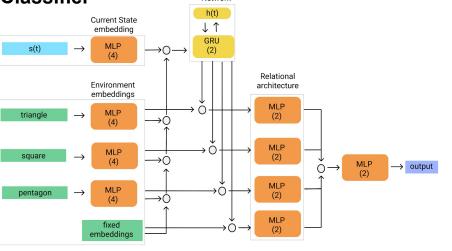
- Inputs embedder: 4-layer MLP (eLU activations, transferred)
- Recurrent network: 2 hidden lavers GRU
- Relational layer: 2-layer MLP (eLU activations)
- Outputs layer: 2-layer MLP (eLU activations)

#### Model 3: rGRU with collision Module (rcGRU)

- *Inputs embedder*: 4-layer MLP (eLU activations, transferred)
- Collision detector: 3-layer MLP (eLU activations, transferred)
- Recurrent network: 2 hidden layers GRU
- Relational layer: 2-layer MLP (eLU activations) Reweighting layer: relational layer outputs weighted by collision prob
- Outputs layer: 2-layer MLP (eLU activations)



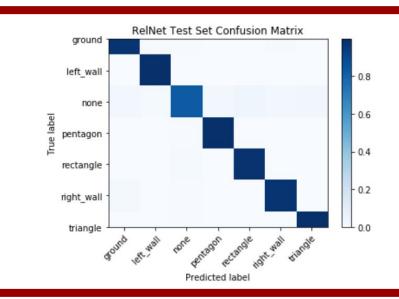




Model 2: rGRU relational, recurrent architecture

# **Analysis: Collision Handling**

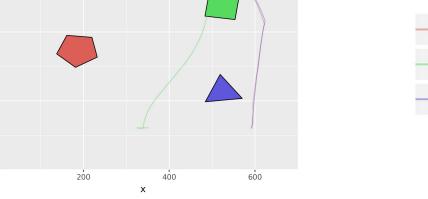
- Question: Given that the model's predicted variance is relatively constant, is it struggling to detect when collisions occur? (Free falls should have low variance, collisions high)
- **Inputs**: shapes (x, y, r) and ball position and velocity (px, py,vx,vy)
- Outputs: 7-way softmax (no collision, left wall, right wall, ground, triangle, square, pentagon)
- **Testing accuracy**: average = **96.5**%; object collisions = **99**%; free fall = **86.1**%
- Findings: Need deep architectures for high accuracy, there are still latent variable not accounted for by the model



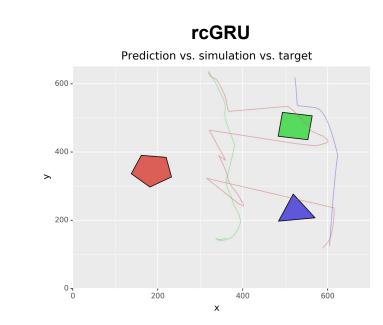
# Relational network (rGRU, rcGRU) results

# Regularization Prediction vs. simulation vs. target





- Full simulations go astray, after one bad prediction
- Collisions are not yet learned (simulation goes through green square)
- The model learns continuity in motion



- Collision reweighting are not handled by the subsequent layers in the given architecture
- At each "collision", the trajectory jumps
- High bias, loses continuity

#### References

rGRU, bias

regularized

[1] Baillargeon et al. (2004). Infants' physical world. *Current directions in psychological scienc*e [2] Gerstenberg et al. (2017). Intuitive theories. Oxford handbook of causal reasoning. [3] Gerstenberg et al. (2018). What happened? Reconstructing the past through vision and sound. CogSci. [4] Fragkiadaki et al. (2015). Learning visual predictive models of physics for playing billiards. [5] Battaglia et al. (2016). Interaction networks for learning about objects, relations and physics. NIPS

[6] Watters et al. (2017). Visual interaction networks: Learning a physics simulator from video. NIPS.

