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Background Model Architectures

Humans build probabilistic models of the world Neural Physics Engines e Model 1: Gated Recurrent Unit + Collision Classifier (cGRU) empeddng X
e Humans receive uncertain sensory information and neural e Previous neural physics engine models only output a sing| Inputs embedder: 2-layer MLP (ReLU activations) | @

, : SRy F : _ Recurrent network: 2 hidden layers GRU
processes have inherent noise [8,10] deterministic prediction for each timestep [4-7] GRU outputs layer- 3-layer MLP (ReLU activations)

Humans implicitly learn physical laws of motion and form We allow the network to learn distributions (e.g., Gaussian Collision classifier: 5-layer MLP (eLU activations) Envionment Calison

intuitive physics engines [1,2] ~ N(u,2)) for predicted states o
Humans conduct probabilistic mental simulations when Predicted states could be either samples from predicted * Model 2: Relational GRU (rGRU)
reasoning about the world [3,8,9] distributions or the distribution u Inputs embedder: 4-layer MLP (eLU activations, transferred) Model 1: cGRU Gated Recurrent Unit + Collision

Recurrent network: 2 hidden layers GRU Classifier Network
Relational layer. 2-layer MLP (eLU activations) P I

embedding

Outputs layer: 2-layer MLP (eLU activations) Me 0 @
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_ e Model 3: rGRU with collision Module (rcGRU) embeddings -
Main Task Inputs 2 E | lnpu_ts_ embedder: 4-layer MLP (eLU acti_vati_ons, transferred) S @ @
e Plinko task: Shown the initial e Environment: (x, y, r) for each obstacle 3 Collision detector: 3-layer MLP (eLU activations, transferred) o
: o : Recurrent network: 2 hidden layers GRU i O—>| M — [oupit
state of the plinko e State at t: position (px, py) and velocity (vx,vy) | B e 2% Relational layer: 2-layer MLP (eLU activations) | g
environment, predict the path of ball at time t . T s -t Reweighting layer: relational layer outputs weighted by collision prob :4:
of ball dropping Outputs: position and velocity of ball at time t+1 § = = AR | Outputs layer. 2-layer MLP (eLU activations)
e Simulation: {5'31, To, ..., SUT}|$0 Loss function: : A\ f = . Model 2: rGRU relational, recurrent architecture
e mean squared error: ||predicted - target||? K P -
e Cross entropy for collision classifier: CE(y,9) = — > i log .

RelNet Test Set Confusion Matrix

Analysis: Collision Handling ™

left_wall

none 1

Question: Given that the model’s predicted variance is relatively constant, is it struggling to
CG R U mOdeI reSU |tS detect when collisions occur? (Free falls should have low variance, collisions high)
Inputs: shapes (X, y, r) and ball position and velocity (px, py,vx,vy) rectangie 1
Loss over epoch Classification over Free falls Fall with collisions Outputs: 7-way softmax (no collision, left wall, right wall, ground, triangle, square, pentagon) fght_wall {
epoch Prediction vs. simulation vs. target Prediction vs. simulation vs. target Testing accuracy: average = 96.5%; object collisions = 99%; free fall = 86.1%
1 » Findings: Need deep architectures for high accuracy, there are still latent variable not
accounted for by the model
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Prediction vs. simulation vs. target Prediction vs. simulation vs. target

Model converges quickly: error close to O for position e Model prediction of s(t+1)|s(t) works well |
and velocity prediction e For the whole simulation of s(1), s(2), ... s(t) |s(0) m
Collision classification has high accuracy (98-99%) o Model works well for free fall cases _ D _

o However, collisions are rare (~ 3%) o Model fails in collisions cases N . / , .
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Discussion | e A ——

X X

e Physics simulation model learns a notion of continuity, giving smooth trajectories z ~— oy ~ | | | | Full simulations go astray, after one bad prediction Collision reweighting are not handled by the
e The models perform well in free falls but they have difficulty learning the collisions - W 1 | _ Collisions are not yet learned (simulation goes subsequent layers in the given architecture
Thi be due to th f fall le in th ntin tm fies dr ! s rGRU, bias rGRU, bias through green square) At each “collision”, the trajectory jumps
0 'S May be due 1o The more 1ree 1afis sampie In te Contintious time series drop regularized unregularized The model learns continuity in motion High bias, loses continuity
o This may be overcome guided simulations that simulates collisions more
o This may be due to discrete sampling of a continuous path.
e Combining various architectural choices may yield better results

o Feeding outputs from a pre well-trained collision classifier to (NGRU 1 i 5 References
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