

Combatting Adversarial Examples in Satellite Imagery

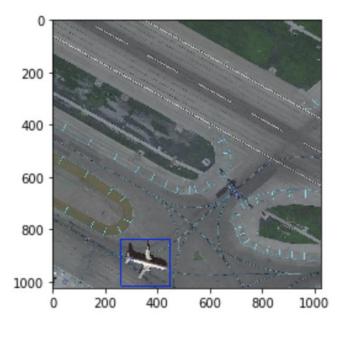
Caroline McKee (cnmckee@stanford.edu

Motivation

- Adversarial examples have recently been shown to successfully trick object detection networks trained on satellite imagery[1].
- Dangerous implications for national defense
- Increasingly important as systems move to real-time Idea: by using hand-selected features surrounding a detected object, can create a lightweight algorithm to boost prediction accuracy.

Data

- Data comes from (Large Dataset for Object Detection in Aerial Images)[2]
- 4000 "macro-images" with bounding box labels
- Classes: 'ship','large-vehicle','storagetank','airplane'
- Training/Val/Test: 3134/385/534 "subimages"
- Limited data = need complex models to get insight from data



Features

Scheme	Description (size)
Sub_1	Counts of surrounding classes in sub-image (4)
Sub_2	Sub_1 + avg distances to classes in sub-image (8)
Macro_1	Counts of surrounding classes in macro-image (4)
Macro_2	Macro_1 + avg distances to classes in macro-image (8)
Macro_3	Macro_2 + avg angles to classes in macro-image (8)
Macro_4	Macro_2 and Macro_4 (12)

- Features for YOLO = CNN
- Per class for context-gen:
- 1/(avg_dist to objects)
- Counts
- Average angle
- Made features for subimages and macro-images

[1] Czaja, W., Fendley, N., Pekala, M. J., Ratto, C., and Wang, I. Adversarial examples in remote sensing. CoRR, abs/1805.10997, 2018

[2] Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., and Zhang, L. Dota: A large-scale dataset for object detection in aerial images. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

Yash Chandramouli (yashc3@stanford.edu)

Models

Context Algorithms

K-NN

- Object classified based on k nearest points Black Box Classifier
- Black out object and train CNN on surrounding pixels Linear SVM

$$\min\left(\frac{1}{n}\sum_{\{i=1\}}^{n}\max\left(0,1-y_{\{i\}}(wx_{i}-b)\right)\right)+\lambda w^{T}w$$

 $K(\mathbf{x},\mathbf{x}') = \exp\left(-rac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\sigma^2}
ight)$

RBF SVM:

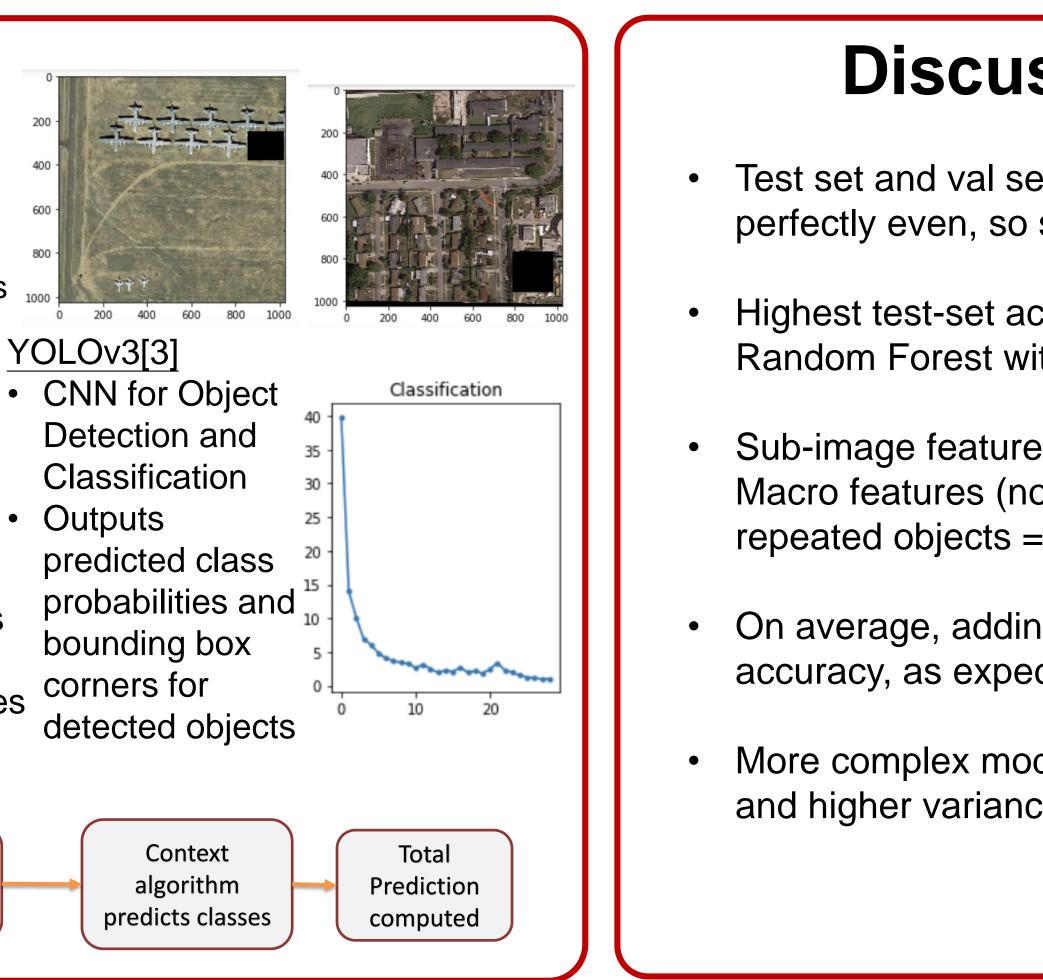
Decision Tree

Random Forest: Constructs multiple decision trees Simple NN (MLP): 3 layers, $\alpha = 1$

Naïve Bayes: uses counts to determine probabilities QDA: GDA but each class has its own covariance AdaBoost:

Fitting generic weak classifiers

$$F(x) = sign(\sum_{m=1}^{M} \theta_m f_m(x)),$$



Raculte

	ΓΕΞΟΠΞ																			
		Sub_1			Sub_2			Macro_1			Macro_2			Macro_3			Macro_4			
			Train	Dev	Test	Train	Dev	Test	Train	Dev	Test	Train	Dev	Test	Train	Dev	Test	Train	Dev	Test
	Metric	K-NN	0.952	0.711	0.861	0.975	0.896	0.905	0.998	0.467	0.279	0.998	0.500	0.736	0.977	0.771	0.751	0.978	0.768	0.759
YOLOv3	mAP = 0.449	LinSVM	0.903	0.824	0.904	0.950	0.892	0.909	0.879	0.852	0.878	0.883	0.858	0.877	0.879	0.858	0.878	0.882	0.863	0.877
Black Box	Acc = 0.682	RBF	0.927	0.883	0.878	0.963	0.887	0.851	0.897	0.879	0.861	0.900	0.864	0.390	0.941	0.689	0.689	0.944	0.669	0.426
		DT	0.931	0.889	0.926	0.943	0.866	0.881	0.913	0.772	0.788	0.920	0.664	0.881	0.913	0.766	0.775	0.920	0.664	0.881
		RF	0.932	0.883	0.890	0.942	0.902	0.960	0.914	0.824	0.830	0.911	0.550	0.861	0.897	0.722	0.884	0.898	0.643	0.897
		MLP	0.915	0.860	0.902	0.949	0.895	0.918	0.885	0.849	0.826	0.885	0.859	0.825	0.892	0.855	0.826	0.893	0.842	0.825
		NB	0.844	0.819	0.840	0.879	0.882	0.895	0.811	0.886	0.762	0.763	0.767	0.598	0.802	0.883	0.780	0.768	0.781	0.594
		QDA	0.846	0.820	0.838	0.882	0.884	0.870	0.809	0.885	0.762	0.770	0.755	0.591	0.811	0.886	0.768	0.783	0.780	0.603
		Ada	0.918	0.897	0.869	0.930	0.884	0.804	0.849	0.818	0.783	0.867	0.229	0.867	0.862	0.864	0.887	0.875	0.227	0.871

References

[3] Redmon, J. and Farhadi, A. Yolov3: An incremental improvement. CoRR, abs/1804.02767, 2018 [4] github: https://github.com/yashc95/context4sats

Paul Caron (pcaron@stanford.edu)

Discussion

- Test set and val set distributions not perfectly even, so strange results.
- Highest test-set accuracy was from Random Forest with Sub_2
- Sub-image features outperformed Macro features (not enough data, or repeated objects = overfitting)
- On average, adding features improved accuracy, as expected.
- More complex models had lower bias and higher variance (as expected)

Future Work

- Compute final boost to YOLO classification
- Potentially put context-algorithm in the loop with YOLO
- Assess time-complexity in addition