
Combatting Adversarial Examples in Satellite Imagery

Motivation
• Adversarial examples have recently been shown to 

successfully trick object detection networks trained on 

satellite imagery[1].

• Dangerous implications for national defense

• Increasingly important as systems move to real-time 

Idea: by using hand-selected features surrounding a 

detected object, can create a lightweight algorithm to 

boost prediction accuracy.

Data

[1] Czaja, W., Fendley, N., Pekala, M. J., Ratto, C., and Wang,I. Adversarial examples in remote sensing.

CoRR, abs/1805.10997, 2018

[2] Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., and Zhang, L. Dota: A 

large-scale dataset for object detection in aerial images. In The IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), June 2018

References Future Work

Models

YOLOv3[3]

• CNN for Object 

Detection and 

Classification

• Outputs 

predicted class 

probabilities and 

bounding box 

corners for 

detected objects

YOLO 
Predicts 
Classes

Context 
algorithm 

predicts classes

Total 
Prediction 
computed

Context Algorithms

• K-NN

• Object classified based on k nearest points

• Black Box Classifier
• Black out object and train CNN on surrounding pixels

• Linear SVM

• RBF SVM: 

• Decision Tree

• Random Forest: Constructs multiple decision trees

• Simple NN (MLP): 3 layers, 

• Naïve Bayes: uses counts to determine probabilities

• QDA: GDA but each class has its own covariance

• AdaBoost:

• Fitting generic weak classifiers 

Results

Discussion

• Test set and val set distributions not

perfectly even, so strange results.

• Highest test-set accuracy was from 

Random Forest with Sub_2

• Sub-image features outperformed

Macro features (not enough data, or 

repeated objects = overfitting) 

• On average, adding features improved 

accuracy, as expected.

• More complex models had lower bias 

and higher variance (as expected)

• Compute final boost to YOLO classification

• Potentially put context-algorithm in the loop 

with YOLO

• Assess time-complexity in addition

[3] Redmon, J. and Farhadi, A. Yolov3: An incremental improvement.

CoRR , abs/1804.02767, 2018

[4] github: https://github.com/yashc95/context4sats

Features

Paul Caron (pcaron@stanford.edu)Caroline McKee (cnmckee@stanford.edu Yash Chandramouli (yashc3@stanford.edu)

• Data comes from (Large Dataset for Object 

Detection in Aerial Images)[2]

• 4000 “macro-images” with bounding box 

labels

• Classes: ‘ship’,’large-vehicle’,’storage-

tank’,’airplane’

• Training/Val/Test: 3134/385/534 “sub-

images”

• Limited data = need complex models to get 

insight from data

• Features for YOLO = CNN

• Per class for context-gen: 

• 1/(avg_dist to objects)

• Counts

• Average angle

• Made features for sub-

images and macro-images

Scheme Description (size)

Sub_1 Counts of surrounding classes 
in sub-image (4)

Sub_2 Sub_1 + avg distances to 
classes in sub-image (8)

Macro_1 Counts of surrounding classes 
in macro-image (4)

Macro_2 Macro_1 + avg distances to 
classes in macro-image (8)

Macro_3 Macro_2 + avg angles to 
classes in macro-image (8)

Macro_4 Macro_2 and Macro_4 (12)

min
1

n
෍

𝑖=1

𝑛

max 0,1 − 𝑦 𝑖 𝑤𝑥𝑖 − 𝑏 + 𝜆𝑤𝑇𝑤

𝛼 = 1

Sub_1 Sub_2 Macro_1 Macro_2 Macro_3 Macro_4

Train Dev Test Train Dev Test Train Dev Test Train Dev Test Train Dev Test Train Dev Test

K-NN 0.952 0.711 0.861 0.975 0.896 0.905 0.998 0.467 0.279 0.998 0.500 0.736 0.977 0.771 0.751 0.978 0.768 0.759

LinSVM 0.903 0.824 0.904 0.950 0.892 0.909 0.879 0.852 0.878 0.883 0.858 0.877 0.879 0.858 0.878 0.882 0.863 0.877

RBF 0.927 0.883 0.878 0.963 0.887 0.851 0.897 0.879 0.861 0.900 0.864 0.390 0.941 0.689 0.689 0.944 0.669 0.426

DT 0.931 0.889 0.926 0.943 0.866 0.881 0.913 0.772 0.788 0.920 0.664 0.881 0.913 0.766 0.775 0.920 0.664 0.881

RF 0.932 0.883 0.890 0.942 0.902 0.960 0.914 0.824 0.830 0.911 0.550 0.861 0.897 0.722 0.884 0.898 0.643 0.897

MLP 0.915 0.860 0.902 0.949 0.895 0.918 0.885 0.849 0.826 0.885 0.859 0.825 0.892 0.855 0.826 0.893 0.842 0.825

NB 0.844 0.819 0.840 0.879 0.882 0.895 0.811 0.886 0.762 0.763 0.767 0.598 0.802 0.883 0.780 0.768 0.781 0.594

QDA 0.846 0.820 0.838 0.882 0.884 0.870 0.809 0.885 0.762 0.770 0.755 0.591 0.811 0.886 0.768 0.783 0.780 0.603

Ada 0.918 0.897 0.869 0.930 0.884 0.804 0.849 0.818 0.783 0.867 0.229 0.867 0.862 0.864 0.887 0.875 0.227 0.871

Metric

YOLOv3 mAP = 0.449

Black Box Acc = 0.682

https://spinningup.openai.com/en/latest/algorithms/ddpg.html

