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Abstract

In this report we consider the semi-supervised learning
problem for multi-label image classification, aiming at ef-
fectively taking advantage of both labeled and unlabeled
training data in the training process. In particular, we im-
plement and analyze various semi-supervised learning ap-
proaches including a support vector machine (SVM) method
facilitated by principal component analysis (PCA), and a
self-training method that iteratively conducts supervised
learning and enlarges the set of training labels on the go.
We compare the performances of semi-supervised learning
methods with supervised learning benchmarks, and intro-
duce a heuristic performance analysis for the training pro-
cess. In addition, we analyze the impact of different training
parameters for the PCA-SVM and the self-training method
on the prediction performance. The algorithms are imple-
mented for the ChestX-rayl4 [32] medical image dataset.

1. Introduction

The recent progress in deep learning research has sig-
nificantly improved the performance of various computer
vision tasks for natural images including image classifica-
tion [16, 29, 30, 12], object detection [9, 27] and instance
segmentation [19] benefited from the availability of a large
volume of labeled natural image datasets. It is expected that
computer vision methods based on supervised learning will
also contribute to medical image applications such as early-
stage cancer detection and image diagnosis. However, chal-
lenges emerge as it is difficult to construct large densely
labeled medical datasets since manually annotating medi-
cal images requires medical and clinical expertise. In other
words, labeled medical data are often much more expensive
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Figure 1: Two multi-label chest X-ray image samples from
ChestX-ray14 dataset [32] with radiology report, disease key-
words extraction and localization results.

than unlabeled data.

Two primary approaches have been introduced to tackle
the medical image recognition task on a dataset with few la-
beled samples: semi-supervised learning and transfer learn-
ing. Semi-supervised learning considers a prediction prob-
lem with only a small number of labeled training data by
exploiting the information provided by both labeled and un-
labeled data [2]. The labeled data will provide information
for joint distribution of samples and labels, while the unla-
beled data provides information of the distribution of sam-
ples [35]. Multiple approaches have been developed and
widely applied in computer vision, and a comprehensive lit-
erature review can be found in [35].

One of the notable methods for semi-supervised learn-
ing is the self-training technique, which is first introduced
in [20]. The main idea of self-training is to iteratively ap-
ply a supervised learning algorithm based on the currently
available training labels and include the predicted examples
with high confidence scores into the updated training set. In
this manner, more information of the originally unlabeled
data is incorporated into the classifier after each iteration as
the training label set is enlarged in each step.

Transfer learning is another method widely used in com-
puter vision scenarios to overcome the challenge of insuf-



ficient labeled training data. When the unlabeled training
dataset is small, transfer learning methods extract informa-
tion from the trained model of a different large dataset to
facilitate the current task. A literature survey on transfer
learning is presented in [21].

This project studies a medical image classification prob-
lem based on the ChestX-rayl4 [32] dataset that contains
over 100 thousand front-view X-ray images with annota-
tions of 14 thoracic diseases. We first propose a deep learn-
ing approach with supervised learning. Then we introduce
semi-supervised methods using machine learning based on
principal component analysis (PCA) and support vector ma-
chine (SVM). In addition, we study a self-training approach
where in each iteration we perform supervised deep learn-
ing algorithms and enlarge the labeled training sets. We
compare their performances with the supervised learning
benchmarks and the performance of the semi-supervised
ladder network approach.

2. Related Work

Deep Learning in Medical Imaging.  One of the first
successful approaches of applying deep neural networks to
biomedical imaging is [4]. Recent works studied the appli-
cations including skin cancer classification [8], breast can-
cer diagnosis [22], brain tumor segmentation [3 1], and lung
nodule detection [3], where deep learning methods have
shown good experimental performance. An overview of the
recent progress is summarized in [34].

Semi-supervised Learning. Empirical results show that
semi-supervised learning improves the performance com-
pared to supervised learning that only exploits labeled
data [10]. Primary methods for solving semi-supervised
learning include generative models [13], self-training [28],
transductive SVMs [1], entropy regularization [10], and
graph-based models [36]. [!1] and [I4] consider a semi-
supervised image classification problem with a variational
inference algorithm based on deep generative models. An-
other deep neural network based method is the ladder net-
work [24]. In [18], a self-training support vector machine
(SVM) algorithm is studied. In [28], an object detection
problem is studied with the self training expecation maxi-
mization (EM) method.

3. Methods & Experiments

This project primarily focuses on the thoracic disease
classification problem based on X-ray image data, which
can be formulated as a multi-label problem since each sam-
ple possibly has multiple diseases simultaneously.

In this section, we first briefly introduce the ChestX-
rayl4 dataset, then describe the methods we apply: the
ResNet [12] model which is a supervised baseline, the
SVM-PCA method, the self-training approach, and the lad-

der network for comparison.

3.1. ChestX-ray14 Dataset

The ChestX-rayl4 [32] dataset illustrated in Figure |
is currently the largest chest X-ray database that contains
112,120 frontal-view X-ray images from 32,717 patients
with 14 common thoracic disease categories labeled by text
mining radiology reports. In ChestX-rayl4, 60,412 sam-
ples are healthy and 51,708 samples have (possibly mul-
tiple) thoracic diseases. Following the experiment setting
in [32], we randomly choose 78,484 images (70%) used for
training, 11,212 images (10%) for validation and 22,424 im-
ages (20%) for testing. In [32], a multi-label classification
benchmark is also presented.

3.2. Supervised Learning
3.2.1 ResNet model for transfer learning

To begin with, we apply the deep residual network (ResNet)
model for transfer learning and particularly choose the
ResNet-18 and ResNet-50 models inspired by [12].

For our multi-label classification setting, we adjust the
original ResNet model that is supposed for single-label clas-
sification using the multi-label soft margin loss when train-
ing the network.

Denote by C the collection of categories. Let T' €
{0,1}/°l be the actual image label and Y € RIC! be the
network prediction. The training loss can be formulated as
follows:
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The final predicted probability is then derived by applying
the sigmoid activation function on the confidence score vec-
tor.

We use the ImageNet pre-trained model as the initial-
ization to train the ResNet model with the idea of trans-
fer learning. The experiment results of supervised learning
and transfer learning are shown in Table 1. Here, the area-
under-curve (AUC) score is applied as the metric. compared
with benchmark results [32] and previous work [33, 23],
our method gets the state-of-the-art results in average AUC
scores as well as most disease classes. We refer to [5] for
the implementation of the ResNets.

3.3. Semi-supervised Learning
3.3.1 PCA-SVM baseline model

We consider a baseline machine learning model combining
PCA and SVM. First, we preprocess the X-ray images of
original size 1024 x 1024 by resizing them into 128 x 128.
We apply the PCA approach to reduce the data dimension
of the flattened image vector to a dimension of 2500. Then



Method

Benchmark [32] | DenseNet-LSTM [33] | CheXNet [23] | Ours - ResNet-18 (Fine-tune)

Ours - ResNet-50 (Fine-tune)

Atelectasis 0.7158 0.772 0.8209 0.8190 0.8276
Cardiomegaly 0.8065 0.904 0.9048 0.8998 0.9013
Effusion 0.7843 0.859 0.8831 0.8881 0.8903
Infiltration 0.6089 0.695 0.7204 0.7165 0.7229
Mass 0.7057 0.792 0.8618 0.8534 0.8690
Nodule 0.6706 0.717 0.7766 0.7738 0.7884
Pneumonia 0.6326 0.713 0.7632 0.7593 0.7588
Pneumothorax 0.8055 0.841 0.8932 0.8934 0.9033
Consolidation 0.7078 0.788 0.7939 0.8116 0.8178
Edema 0.8345 0.882 0.8932 0.9061 0.9106
Emphysema 0.8149 0.829 0.926 0.9083 0.9198
Fibrosis 0.7688 0.767 0.8044 0.8149 0.8197
PT 0.7082 0.765 0.8138 0.8007 0.8048
Hernia 0.7667 0914 0.9387 0.8822 0.8700
NoFinding - 0.762 - 0.7229 0.7894
Average | 0.7379 | 0.798 | 08424 | 0.8377 0.8432

Table 1: Per-class AUC scores of ROC curves for multi-label classification on ChestX-ray14 dataset, which present the quantitative
performance of different models with or without transfer learning in fully-supervised learning setting.

we use the SVM model to classify the image vectors into
normal and abnormal categories. In this way, we train a
binary classifier for each of the 14 disease categories.

The number of components selected for the PCA is cru-
cial for the classifier performance. We begin with a low-
dimensional PCA and found that the subsequently trained
SVM classifier is not able to discriminate images of dif-
ferent classes, and all the prediction outputs are the same.
This might be because of the fact that in a low-dimensional
space, the images of different classes are mixed together
and can not be separated by a SVM model effectively. Be-
sides, we realized that it is important to balance the training
samples. Recall that in the semi-supervised learning, the
number of training samples is very small. If only a small
amount of positive examples are randomly chosen for train-
ing, it is hard for the SVM to give a good boundary since
the chosen positive examples only represent a partial distri-
bution of the positive samples.

We apply the PCA-SVM method trained on a training set
comprising of 2000 labeled samples and evaluate the model
in the testing dataset (22,424 images, which is 20% of the
whole ChestX-ray database). We use different PCA dimen-
sions ranging from 1000, 2000, and 5000. The testing per-
formance of ROC AUC scores are presented in Table 2. We
consult [6] for the implementation of the PCA-SVM algo-
rithm.

In order to explore the impact of the number of
labeled training samples and the number of com-
ponents in the PCA on the testing performance, we
compare the performances with the number of training
labels ranging from {0.1,1,2,5,10,15,20,25,50} X
103, and the PCA dimension ranging from
{20, 100, 500, 1000, 1500, 2000, 2500, 5000}.  The ex-
periment result is shown in Fig. 2. We see that the
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Figure 2: Semi-supervised learning performance of PCA-SVM
model on the test dataset for classification of disease class “Fi-
brosis” with different number of training labels and various PCA
reduction dimensions.

performance is improved as the number of active dimen-
sions in the PCA step increases. The classifier performs
poorly when the PCA dimension is as low as 20 and 100.
We also observe that when the number of active PCA
components is relatively low at 20, 100, and 500, the
AUC scores can decrease as the number of training labels
increases. Note that when the PCA dimension is low,
a large number of training labels may cause overfitting
and jeopardize the testing performance. Approximately
2000 PCA components and 2000 training labels will be
sufficient for a good performance, above which increasing
the number of training labels and the number of PCA
components does not improve the scores significantly.



3.3.2 Self-training

In this subsection we study the self-training approach that
extracts information from both the labeled and unlabeled
training data through sequentially training a network with
new labels added based on previous iterations. While
the general theoretic analysis of the performance of self-
training algorithms can be difficult [35], here we try to pro-
vide a heuristic analysis.

Suppose the training data are from a set X and the un-
derlying correct classification labels are from a set ). We
have mg labeled training samples in Xy C X with la-
bels Vy and m; = M — mg unlabeled training samples
in X1 C X. We start with my training labels and imple-
ment a supervised learning algorithm with a particular net-
work architecture and derive confidence scores S for the
M — mg unlabeled samples. Afterwards, we select ¢ un-
labeled samples with the highest confidence measures de-
noted by S. = {p1,...,p.} respectively, and incorporate
them into the labeled training set together with their pre-
dicted labels ),. This training process continues sequen-
tially as the label set gets enlarged gradually. In this ap-
plication, we implement a fine tuned ResNet-50 network in
each iteration as the supervised learning method. The self
training approach is summarized in Algorithm 1.

Suppose the relationship between the samples and the
underlying classification result can be described with a
mapping f : & — ). If we are given correct labels for
all the training data, we will arrive at a learnt mapping f .
However, in the self-training approach, the c picked pre-
dictions in each step may bias the learning result from f
due to possible incorrect predictions, which we roughly
view as noise. If we approximate the probability that the
selected predictions are correct with their respective con-
fidence scores pi,...,p., for stochastic gradient descent,
each newly selected label will incur noise with mean in the
orderof ¢; = (1 —p))a,i=1,...,c

Algorithm 1: Self-training method with ResNet

1 initialize Xjape1 = Xy, Nabel = Vo, Q, C;

2 repeat

3 (Voredict> Spredict) := ResNet(Manel, Viabel, ©);
4 | (X, Ve, S.) = findmax (Spredict):

5 | Xabel == Mabel UXer Vavel = Vaver U Ves
6 until iterations finished,

One of the most important parameters besides the learn-
ing rate « is the selection parameter c, i.e. the number of
predicted labels added to the training label set in each round.
In Figure 3, we present the performances of the self-training
method with ¢ ranging in {1,2,3,4,5} with learning rate
a = 0.01. We see that empirically for this application,
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Figure 3: Performance of the self-training approach with different
selection parameter ¢’s. The model is based on fine-tuning the
ResNet-50 network and trained with 2000 images.

¢ = 3 or 4 will be good choices.

The performance of the self-training method is presented
in Table 2 and 3. In Table 2, we compare the per-class AUC
scores of self-training based on ResNet18 and ResNet50
using 2000 training labels with other approaches. In Ta-
ble 3, we compare the performances of self-training with
1000, 2000, and 5000 labels respectively with other meth-
ods. Both empirical examples show that self-training can
be applied to improve the classification performances. It
is shown to outperform the CNN ladder network for most
classes and is usually better than or close to the benchmark.

3.3.3 CNN-based ladder network

Another approach for semi-supervised learning is the lad-
der network [24] proposed based on the stacked denoising
autoencoders [25, 26], where a noisy encoder feed forward
path and a corresponding denoising decoder path are added
for learning unlabeled training data to the normal feed for-
ward network through additional lateral connections. The
performance of ladder networks for the MNIST dataset [17]
and the CIFAR-10 dataset [15] have been evaluated in pre-
vious work.

To construct ladder network for chest X-ray image clas-
sification, we propose a 11-layer CNN model with increas-
ing feature map channels and decreasing convolution ker-
nels in the feedforward encoder path. And the final layer is
a global mean pooling layer to aggregate the spatial image
information. The experiment results for CNN-based ladder
network is shown in Table 2 for comparison purpose. We
refer to the github repository in [7] for the implementation
of ladder networks.



Method|  Bench- PCASVM PCASVM PCASVM | ResNetl8 ResNet50| ResNet18ST ResNet50ST ~ CNN-

mark [32] (1000) (2000) (5000) Ladder
ATE 0.7158 0.605 0.619 0.629 07273 0.7084 0.7312 0.7120 0.4941
CARD 0.8065 0.655 0.689 0.704 07501  0.7334 0.7453 0.7404 0.7939
EFF 0.7843 0.673 0.674 0.686 08104  0.8118 0.8123 0.8043 0.7395
INFI 0.6089 0.602 0.598 0.609 0.6593  0.6500 0.6624 0.6552 0.5803
Mass 0.7057 0.554 0.558 0.579 0.6758  0.6729 0.6687 0.6646 0.6108
NOD 0.6706 0.529 0.539 0.551 0.6511  0.6386 0.6364 0.6436 0.5312
PNA 0.6326 0.592 0.590 0.612 06792 0.6711 0.6823 0.6861 0.5907
PTX 0.8055 0.610 0.616 0.625 07803  0.7735 0.7755 0.7821 0.6630
CON 0.7078 0.667 0.672 0.685 0.7699  0.7598 0.7616 0.7645 0.6711
Edema 0.8345 0.754 0.761 0.780 0.8573  0.8559 0.8594 0.8659 0.8170
EMPH 0.8149 0.582 0.596 0.616 07570 0.7789 0.7806 0.7677 0.6879
FIB 0.6158 0.614 0.618 0.632 07263 0.7285 0.7307 0.7377 0.6158
PT 0.7082 0.575 0.584 0.600 0.6971  0.6982 0.7088 0.6964 0.6411
Hernia 0.7667 0.677 0.661 0.649 0.8179  0.8145 0.8219 0.8497 0.7007
Avg. | 07379 | 0.6206 0.6268 0.6398 | 07399 07354 | 0.7412 0.7407 |  0.6527

Table 2: Per-class AUC scores of different semi-supervised methods with the same 2000 labeled training data for multi-label classification
on ChestX-ray14 dataset. ”ST” denotes self-learning approach. The per-class scores for the PCA-SVM method with 1000 and 5000 labels
are also included for comparison.

Average AUC score with # of used labels | 1000 | 2000 | 5000 | All (78484)

Benchmark [32] - - - 0.7379
DenseNet-LSTM [33] - - - 0.798
CheXNet [23] - - - 0.8424
Baseline (PCA+SVM) 0.6206 | 0.6268 | 0.6398 -
ResNet-18 (Fine-tune) 0.7015 | 0.7399 | 0.7744 0.8377
ResNet-18 (Fine-tune) + self-training 0.7062 | 0.7412 | 0.7721 -
ResNet-50 (Fine-tune) 0.7052 | 0.7354 | 0.7752 0.8432
ResNet-50 (Fine-tune) + self-training 0.7088 | 0.7407 | 0.7783 -

Table 3: Average AUC scores of all 14 thoracic categories for multi-label classification on ChestX-ray14 dataset demonstrating the
quantitative performance of different semi-supervised learning approaches including self-training.

4. Conclusion

In this paper, we study the problem of multi-label image
classification based on the frontal chest X-ray image dataset
ChestXrayl4. We conduct a machine learning approach
based on PCA-SVM, and a self-training method based on
ResNet in each iteration, and compare them with the per-
formances of several benchmarks and the CNN networks.
In particular, we studied the impact of PCA dimension in
the PCA-SVM method and the influence of the selection
parameter in self-training approach. We find that in the par-
ticular classification problem considered in this report, self-
training usually exhibits good performance scores compar-
ing to other benchmarks and methods. Besides, we intro-
duce an intuitive understanding of the performance analysis
of self-training. Future works include the rigorous theo-
retic study of the performance of self-training, and improve-
ments to the network structures for better capturing infor-
mation from unlabeled data.

5. Contribution

Shen is responsible for the introduction and literature re-
view of computer vision and medical imaging with deep
learning, and Song is responsible for the introduction and
survey of semi-supervised learning and transfer learning.
The two authors worked jointly on implementing and an-
alyzing the machine learning and self-training methods.
Shen also contributed to the supervised baselines and the
ladder network as a joint work with her CS331B project.
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