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1 Introduction1

Despite the progress of automatic speech recognition (ASR) systems that have led to assistants2

like Alexa and Siri, accent is still an issue in developing robust ASR systems that deliver high3

performance across diverse user groups [1]. Statistical analysis has identified gender and accent4

to be most important factors of speaker variability affecting the fluency of ASR systems [2]. Our5

motivation stems from the fact that both team members are Singaporeans, who are known to have a6

unique, strong and distinctive accent very unlike the American and British accents. ASR systems like7

Google Now and Siri are usually trained on and perform best for these accents [3], and our experience8

has shown that speaking in our native accent with these ASR systems typically end up with not much9

success. We then usually resort to a forced accent in order to get the ASR to recognize the speech10

correctly, which is unnatural and proof that ASR systems can still be improved. Since accent is such11

a crucial aspect in ASR, we were inspired to build an accent classification machine learning model12

which could be used as a preliminary step in the ASR pipeline, allowing it to adopt a more suitable13

speech recognition model adapted to the identified accent for better performance. Other possible14

applications of accent classification include immigration screening [3]. In this project, our goal is to15

develop a deep learning model that is able to identify and classify a speaker by his or her predicted16

native language. The input to our algorithm is an utterance of a word by a speaker.17

2 Related Work18

Previous work has been done on foreign accent classification using traditional machine learning19

techniques. Chen, Lee, and Neidert [4] have used SVM, Naïve Bayes and logistic regression to obtain20

57.12% test accuracy with SVM for Mandarin and German non-native speakers, using the CSLU21

database. Wang et al. [5] identified that models trained on male data do not generalize well on female22

data. They used a layered classification, first classifying by gender and then by accent, specifically23

on word-level utterances. Ge, Tan and Ganapathiraju [6] used Perceptual Linear Predictive features24

instead of MFCCs, and also focused on vowel extractions for their dataset after observing that most25

accents appeared in the pronunciation of vowels rather than consonants. We felt that this approach26

was quite clever but difficult to perform on a large dataset. Upadhyay [7] developed a new dataset of 527

speakers from China, India, France, Germany, Turkey and Spain from online videos, and was different28

from most of the existing research as he had used deep learning, specifically deep belief networks,29

to perform classification. Ma, Fan and Zhou [8] identified that applying a Gaussian Mixture Model30

approach, together with Hidden Markov Models to be the best approach in accent classification.31

3 Dataset and Features32

3.1 Dataset33

We chose to use the Wildcat Corpus of Native and Foreign-Accented English[9] since it was available34

for free and contained a scripted reading scenario in which participants clearly enunciated a scripted35

list of words one at a time. This was useful in our preprocessing step where we segmented out36

individual word utterances as separate audio clips from the original speech recording, producing37

many word-level utterances for us to perform further feature extraction from. As the dataset from38

Wildcat Corpus consists of predominantly Chinese, English and Korean native language speakers, we39

decided to use these three native languages as our accent classification task classes.40
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3.2 Preprocessing41

We used a peak detection library [10] to preprocess the audio recordings by segmenting out the word42

utterances in each speech recording and extracting the audio signals within the intervals when the43

speaker was pronouncing a word.44

45

Figure 1: Regions below the threshold energy density (in red)46

Time windows of unit length 0.18 seconds were extracted when its energy density was more than47

4.8% of the average energy density of the entire audio signal in the file. We experimented with several48

different values of the time window length and energy density threshold and found that the above49

values gave the best isolation of word utterances from the silences in the speech recording on manual50

inspection of the extracted word utterances. Energy density is calculated as the squared sum of its51

amplitude over the time window.52

With many word level utterances for each native language class, we then used the Librosa [11] library53

to extract MFCCs from each of the extracted audio segments. We chose to extract MFCCs because54

it accounts for human perception sensitivity with respect to frequencies, and thus is appropriate for55

speech/speaker recognition [3]. For each utterance, we fixed its length to 1 second by either padding56

or trimming the utterance, and extracted 50 MFCC bands from the utterance.57

58

Figure 2: Plot of audio segment for word ‘legs’ (left) and its MFCC after padded to 1 second (right)59

We then normalized the MFCC samples by subtracting the mean and dividing by the standard60

deviation. The result of the preprocessing and feature extraction step is input data is an m x 50 x n61

tensor, where m is the total number of utterances, and n is the number of frames sampled at 2205062

Hz. Our final dataset consisted of 23910 examples, split into a training set of 19128 examples (80%),63

a dev set of size 2391 examples (10%), and a test set with 2391 examples (10%). Furthermore, we64

also applied data augmentation to the training set by adding random Gaussian noise (drawn from65

standard Gaussian) to each example, doubling the size of our training set to 38256 examples. The66

idea behind this form of data augmentation is that different individuals naturally speak with different67

vocal frequencies (which are reflected in the small differences in MFCCs) even if they share the68

same accent, so the Gaussian noise serves to provide this natural variation in producing more training69

examples.70

4 Methods71

We first implemented some traditional machine learning methods, specifically ensemble learning72

methods like Random Forests and Gradient Boosting methods, using Sci-kit Learn library. We wanted73

to use these models as baseline performance for our neural networks and thus we mostly used the74

default values provided by the library.75
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We tried 2 deep neural network architectures: the Multi-layer Perceptron (MLP), Convolutional76

Neural Networks (CNN). All neural networks were implemented in Python using the Keras [12]77

neural network library.78

The first neural network architecture we tried to implement was the MLP, which consists of multiple79

stacked fully connected layers of neurons. The MLP has the simplest architecture out of the three80

networks implemented, and was used to establish a baseline performance for the subsequent networks.81

The last layer of the MLP is a softmax layer, performing softmax regression over the three classes.82

During training, a prediction is made for each example in the batch by forward propagation and the83

loss, computed with categorical cross-entropy loss function, is back-propagated to find the error with84

respect to each weight in the network, so that they can be adjusted to descend the loss function and85

decrease the loss value.86

Li = −
∑
j

ti,j log(pi,j) (1)

87

softmax(y)i =
exp(yi)∑
j exp(yj)

(2)

Figure 3: The categorical cross-entropy loss function (Equation 2) and softmax function (Equation 3)88

89

Next we used a CNN which consisted of 2 convolutional layers with 3x3 filters and Rectified Linear90

Unit Layers (ReLU) which apply the activation function x := max(0, x), and max pooling layers91

with 2x2 filter. Batch normalization [13] was also used to speed up training time.92

Convolutional layers preserve the spatial relationship between pixels by learning local patterns, using93

subsamples of input data, as opposed to densely connected layers which learn global patterns, and94

learning image features.95

The Max-Pooling layers retain important information about the image while reducing the dimension-96

ality of the input and thus the computations in the network.97

The final layers are densely connected with the last layer having a softmax layer to output the98

confidence of each class prediction. The Adam algorithm was used for optimization with a learning99

rate of 0.001.100

101

Figure 4: General architecture of CNN [14] (left) and summary of CNN used (right)102

JL2 = J +
λ

2
||W ||2 (3)

Figure 5: L2 regularization on neural networks103

104

A number of measures were found to be useful in reducing overfitting. Dropout layers, which drop105

hidden and visible units (with their connections), were placed between layers. L2 regularization was106
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also applied to reduce overfitting. Early stopping was also used to stop training once training any107

more would increase generalization error.108

5 Results109

5.1 Model Analysis110

Traditional machine learning methods such as Gradient Boosting, Random Forest, were also used to111

construct a baseline. After doing 10 fold cross validation, the following results were obtained.112

Model Test Accuracy (%)
Gradient Boosting 69.1

Random Forest 69.1
MLP 80.0
CNN 88.0

113

5.2 Network Analysis114

Our neural networks were had lesser number of layers compared to pre-trained models such as115

VGG for CNN as the shape produced by MFCCs were less complex than images of real life-objects.116

Increasing the number of filters in each layer did not lead to measurable change in the accuracy, but117

lead to longer training times.118

Model Data Augmentation Train / Dev / Test Accuracy (%)
MLP No 83.9 / 79.0 / 78.4
MLP Yes 83.5 / 79.42 / 80.0
CNN No 85.7 / 87.6 / 87.8
CNN Yes 85.12 / 88.37 / 88.0

119

120

Figure 6: Training and validation accuracy and loss for MLP121

122

Figure 7: Training and validation accuracy and loss for CNN123
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Native Language Precision Recall F1 Score
Chinese 0.904 0.814 0.857
English 0.884 0.913 0.898
Korean 0.850 0.914 0.881

124

Figure 8: CNN Confusion Matrix (left) and Precision-Recall table (right)125

5.3 Error analysis126

When examining examples that were misclassified, we found that some examples had noticeable127

background noise, or were from external sources such as dropping the microphone. These segments128

were incorrectly extracted as they had been loud enough to be detected by the extraction script.129

Thus if the data were better pre-processed to detect these anomalies, better results could have been130

obtained.131

6 Discussion132

The two ensemble models that we planned to use as baseline performance for our neural network133

implementations, Gradient Boosting and Random Forests, performed respectably well at 69% test134

accuracy. Even though they did not perform as well as the neural networks, they were easier to135

implement and this taught us to respect traditional machine learning techniques despite deep learning136

methods gaining popularity recently.137

Among our neural networks, CNN performed better than MLP, as we expected. This is likely because138

CNN is known to perform well on image classification tasks and in our context, we had extracted the139

MFCCs from the utterances to form an image-like input that is fed into the CNN. As such, we have140

effectively reduced the accent classification task from an audio one to an image one, thus using the141

CNN gave better performance.142

Our initial data was based on file level (full speech sentence) sampling at a fixed length, but we were143

unable to obtain reasonable performance (best test accuracy 40% with 5 classes on a different dataset,144

but similar preprocessing). This difference could be due to the fact that at the word level rhythmical145

characteristics except intonation is captured and can be used to distinguish english accent[15].146

We also observed that data augmentation did help to boost the performance of our deep learning147

models, as can been seen in the results table.148

7 Conclusion and Future Work149

The results from our project show the capabilities of deep neural network architectures to classify both150

native and non-native english speakers. Using MFCC extracted from recordings, our CNN model was151

able to perform the classification the best among the algorithms we tested. It also turned out that audio-152

preprocessing and initialization of the CNN and MLP were major factors in affecting performance,153

and data augmentation, L2 regularization and dropouts were helpful in reducing overfitting.154

More classes of non-native speakers could be included to see if our model is able to handle a wider155

variation of non-native speakers and to discern more subtle variations across those classes. Other156

statistical audio features like MFCC n-order derivatives (deltas) and mel-spectrograms could be157

used, or prosodic features such as range and sub-band energies could also be used. Given that our158

training classes had samples from both male and female examples, we could get better accuracy if we159

had trained models separately on them. In an end-to-end system, a model could be used to classify160

male and female samples before classifying for native language. More complex neural network161

architectures can be created by combining several types of neural network architectures, for example162

LSTM and DNN taking a final weighted probability[16].163
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