
CS229 Project Report
MOOC Dropout Prediction

Zixun Yang

jasonyzx@stanford.edu

Abstract — In this project, I built model to predict dropout in

Massive Open Online Course(MOOC) platform, which is the

topic in KDD cup 2015. Different from full dataset in KDD, I

only had partial dataset (36% enrollments). With my feature

engineering result on this complicated three-dimensional dataset,

I first explored different models and optimized parameters

selection to reach best performance. With few models of good

prediction on validation data, I ensembled them together using

XGBoost Classifier to do a second level learning based on the

first level training prediction. In addition, I implemented Long

Short Term Memory(LSTM) Recurrent Neural Networks with

Keras on 30 days univariate Time series data and reached 0.857.

I. INTRODUCTION

Massive Open Online Course (MOOC) has been

revolutionizing the way people getting education. However, it

also raises up concern that MOOC has very high dropout rate

relative to traditional classes. An accurate prediction of dropout

becomes very important because it can help MOOC course

developers to adaptively tune web designs to students with

high dropout rate.

II. RELATED WORK

Student dropout prediction has been tapped using machine

learning technique with different approaches. Dekker et al.

(2009) [1] used decision trees algorithm to predict university

students’ dropout based on their behavior features extracted

from their previous courses. However, this detailed information

is usually missing for MOOC students. On the other hand,

MOOC course has its own advantage on recording students’

behavior: every single behavior is done online and thus

tractable. Monn et al. (2014)[4] used natural language

processing techniques to analyze student’s post in the course

discussion forum. Yang et al. (2013) [5] used NLP to predict

whether a question posted in the discussion forum is resolved

or not. But none of the NLP based work directly predicted

dropout. Kim et at. (2014) [3] analyzed students’ watching

video pattern to do the dropout prediction. These patterns

include skipping, zooming, playing, panning, pausing and

quitting. They use a small dataset because it is very demanding

to extract these behavior patterns.

Liang et at. (2015) [6] has published their work based on the

same dataset. They reached 89% accuracy in dropout

prediction task with gradient boosting decision tree model. The

winning solution of KDD Cup 2015 used multi-stage model

ensemble to do the prediction. They achieved the accuracy of

90.92%. The only write up of their work is a brief white paper.

They announced that they trained 64 classifiers with 8 different

algorithms and different subsets of extracted features; then they

blended predictions of classifiers with the multi-stage ensemble.

III. DATASET AND FEATURES

A. Dataset Description

The data comes from online open source. There are totally

three major files used for training,

▪ enrollment_list.csv:

each line is a course enrollment record with an

enrollment_id E, a user_id U and a course_id C, indicating

that U has enrolled in C.

▪ activity_log.csv:

each line is a behavior record called "event". Each event

contains the following information: enrollment_id, time,

and event. Here event can be as follow,

problem - working on course assignments

video - watching course videos.

access - accessing other course objects except videos and

assignments

wiki - accessing the course wiki

discussion - accessing the course forum

navigation - navigating to other part of the course.

page_close - closing the web page

▪ train_label.csv:

each line is a dropout record of the enrollments in the test

set, which you are required to predict.

B. Dataset Preprocessing

Different from entire dataset of in KDD cup 2015

(8,157,278 logs from 120,543 enrollments as training and

5,387,848 logs from 80,363 enrollments as test), I only get

partial dataset (36% enrollments compare to original dataset)

and I split it into 46,288 enrollments as train set, 11,572

enrollments as dev set and 14,465 enrollments as test set. As

observed from dataset, the maximum length of one course is 30

days. And with course period of 30 days, I process dataset and

divide them into three subsets with different information in 30

days per each enrollment ID,

▪ count for each of seven events frequencies in 30 days

(30x7)

▪ count for total events frequencies in 30 days (30x1)

▪ total consuming time each day in 30 days (30x1)

In addition, I also have count and time for each week of 30

days. Since there are only 39 types of courses in total, I treated

it as a categorical feature. Thus, I one-hot encoded course type.

For each student, course type feature is a vector of length of 39.

I also extracted a few other features of interests. For

example, unique event count indicates how many types of

activity this student has conducted during the whole learning

process. A student how has never used the discussion panel

might have higher chance of dropout than a student who are

making fully use of all the functions in the MOOC. See Table 1

for feature summary.

Table 1 Feature Summary

C. Feature Selection

As I have extracted about 320 features from the dataset, I

need to do the feature selection, not only for training speed, but

also improve the prediction accuracy. Basically, what I did in

this stage was separating the features in each enrollment into

two sets, with drop and not drop case. I plotted the bar plot and

bivariate kernel density estimate plot.

For bar plot, I can see the bar size difference between drop

and not drop case in specific features. With similar bar size

between drop case and not drop case, it means this feature

would not differentiate drop case from not drop case and vice

versa. I mainly observed daily-base data in bar plot in 30 days

length. For example, Figure 1 shows the average daily total

event frequency count and total online time in each day of 30

days course length on drop (blue) and not drop (red) case. As

you can see in both plots, besides day one, data in every other

days have large size difference.

Figure 1 bar plot of daily event count and daily online Time

between drop(blue) and not drop (red)

I also came out with bar plot about average count for each

of 7 events in each day in 30 days period between drop and not

drop case. I came to similar conclusion as shown above.

In addition, for kernel density estimate plot, I can see the

density distribution in specific feature between drop case and

not drop case. If it is a good feature, peak in the plot between

drop and not drop case will be different. The larger the gap

between peak of drop and not drop, the better the feature. I

mainly observed other general features total or average in 30

days. For example, as you can see from the below Figure 2,

two features, total days in 30 days with access activity and

average event frequency count in 30 days, has different density

distribution. It is clearly that access_days here would be a

better indicator for enrollment drop than average event count.

Figure 2 Histogram for features access_days and

average_event_count in drop and not drop case

IV. METHODS

A. LSTM

An LSTM layer consists of a set of recurrently connected

blocks, known as memory blocks. [8] These blocks can be

thought of as a differentiable version of the memory chips in a

digital computer. [8] Each one contains one or more recurrently

connected memory cells and three multiplicative units – the

input, output and forget gates – that provide continuous

analogues of write, read and reset operations for the cells. [8]

One shortcoming of conventional RNNs is that they are

only able to make use of previous context. [9] Bidirectional

RNNs (BRNNs) do this by processing the data in both

directions with two separate hidden layers, which are then fed

forwards to the same output layer. [9] Combining BRNNs with

LSTM gives bidirectional LSTM, which can access long-range

context in both input directions. [9]

By taking advantage of LSTM and BRNN, I built LSTM

model with following framework,

Figure 3 LSTM framework

B. Model ensemble learning

Ensemble learning helps improve machine learning results

by combining several different models. It would help

decrease variance (bagging), bias (boosting), or improve

predictions (stacking). [10]

1) Bagging

Bagging is the very first and simple way of output

aggregation. It’s way to reduce the variance of an estimate is to

average together multiple estimates. One simple bagging

example is shown in following,

In this project, I used three classifiers to do the bagging

ensemble, which are Logistic Regression Classifier, Gaussian

Naïve Bayes and Support Vector Classifier. In each of the

models, I tuned the parameter using GridSearchCV algorithm

to reach a competitive performance in single model training

before bagging ensemble them together.

a) Logistic Regression

Logistic Regression is an simple and very first model I tried

and it can help us have a basic impression and expectation

about the data and model. Logistic Regression prediction can

be demonstrated with following two formula,

b) Gaussian Naïve Bayes

Gaussian Naïve Bayes is an extension of Naïve Bayes, with

addition assumption of Gaussian distribution. It’s the common

and easy way to work with. The likelihood of Gaussian Naïve

Bayes can be expressed as following formula,

c) Support Vector Classifier

Support Vector Classifier is a large margin classifier,

optimizing distance between positive and negative hyperplane.

With geometric margin of with respect to training set

, SVM can be demonstrated by

following formula,

2) Boosting

Boosting is another way of model ensemble which can help

optimized the weak part that each of the classifier learned in

the last round. In another word, more weight is given to

examples that were misclassified by earlier rounds.

a) Gradient Boost

Gradient boosting Classifier would first optimize its loss

function, predict the weak learning and subsequently add weak

learner to help optimize the loss. Detail algorithm can be

demonstrated as below,

Table 2 Gradient Boost Algorithm [11]

b) XGBoost

The system is optimized for fast parallel tree construction,

and designed to be fault tolerant under the distributed setting.

XGBoost can handle tens of millions of samples on a single

node, and scales beyond billions of samples with distributed

computing. [12] Following is the algorithm about how XGBoost

works,

Table 3 XGBoost algorithm [12]

In this project, I did a two-level learning where XGBoost

model was used for second-level boosting of four models.

Detailed design is shown as following figure,

Figure 4 XGBoost two-level learning framework

V. EXPERIMENTS & RESULTS

With the selected features, I started to implement the two

ways of dropout rate prediction described in above section.

Together with total labels of ground truth dropout result, I first

split the extracted features with enrollment ID into two parts,

use set and test set, with portion of 4:1. In addition, I continued

to separate use set into train set and validation set. When doing

the model training, I fit model using the train set and used the

validation set to do the cross validation to get the score

(logloss, accuracy or AUC). During the training stage, in order

to reach best performance of one model, I used GridSearchCV

to tune parameters and got the best parameters as model

parameters before stacking them together. When evaluating the

model, score and confusion matrix would be used.

A. LSTM

Long short-term memory (LSTM) is a special case for

Recurrent Neural Network and it’s designed to avoid long-term

dependency problem. It can remember information for long

period of time. This is because in this architecture a unit can

transfer the information back to itself in different time steps.

Long-short Term Memory is also a variant RNN which is

easier to train because it is immune to the exploding and

vanishing gradient problem of traditional RNN.

In this project, given the daily-based features I extracted in

the III.B (daily seven event frequency count, daily online time

and total event frequency count), I first tried a LSTM networks

first with all the daily activity measures. I used Keras with

Tensorflow as backend. The model summary can be seen in

Table,

Table 2 LSTM model summary

There are four variables for LSTM model, number of

neuron, number of epochs, number of batch and whether

LSTM is bidirectional or not. I tuned each of the parameters

one by one using gridsearch. The best result is given by the

model with the stacked two-layer bidirectional LSTM followed

by a sigmoid unit, with batch size=200. The input size is

7(daily activity count for each event) + 7(daily online time) *

30 (days) and output is the probability of dropout.

Figure 2 is the learning curve for the training and validation

stage.

Figure 5 Log loss and accuracy for

two-layer bidirectional LSTM Model

The evaluation accuracy is 85.8%. It is not my best model

but I don’t consider it a failure. I think a potential improvement

is that I should use real time-series data which I extracted from

the same time points for every observation instead of defining

day1 to day30 according to their individual start time. This way

I will end up with different lengths of sequences for each

student. And I will pad them to feed in the LSTM model.

B. Model ensemble learning

1) Bagging

With GridSearchCV on three models in bagging, Logistic

Regression would reach its best performance in ‘C=1’ and

Support Vector Classifier would reach its best performance in

‘C=0.001’ and Linear Kernel. With mean bagging of Logistic

Regression Classifier, Gaussian Naïve Bayes and Support

Vector Classifier, the result can only slightly improve 0.1%.

2) Boosting

a) Gradient Boost

Beside Gradient Boost, I also tried other decision tree

classifiers, like Extra Tree and Adaboost; while Gradient Boost

has better performance on accuracy and learning curve, as you

can see in the figure. The best parameters for my GBDT is

deviance loss with 180 trees of maximal depth 5 and min

samples leaf of 2. The max features are 60% of total features.

Figure 6 Learning curve of GBDT

Confusion matrix for GBDT in final test set is true negative

number is 1,597, false positive number is 1,429, false negative

number is 492 and true positive number is 10,947. Precision =

TP/(TP+FP) = 0.873, Recall = TP/(TP+FN) = 0.957 and false

positive rate = FP/(FP+TN) = 0.472. Normalized confusion

matrix figure is shown in the following,

Figure 6 Confusion matrix (GBDT)

b) XGBoost

As mentioned in the previous part, Gradient boosting

classifier is used as second level boosting ensemble to further

predict the output from the earlier 4 first-level predictions from

linear Logistic Regression, Support Vector Classifier, Gaussian

Naïve Bayes and Gradient Boosting Decision Trees. The final

evaluation accuracy is 0.876.

C. Discussion

As observed by the result, I can see that model ensemble,

especially decision tree classifiers are comparably better than

one single classifier like Logistic Regression, Naïve Bayes and

Support Vector Classifier. This is because decision tree can

handle non-linear features and have interactions between

different features, comparing to simple classifiers like Logistic

Regression.

For the issue of overfitting and underfitting, I mostly

observed it from the training error/score and validation

error/score to see if there’s any overfitting, as suggested in the

classes. The Stacked LSTM model also seems over-fit the

problem. It can be seen from the learning curve (Figure 5) that

even though the model already converged, my evaluation

accuracy is still lower than the training accuracy. Looking back,

I think it is because I didn’t shuffle the data before every epoch

and my model is a little complex.

The first lesson I learned is that in the real problem, we

always need to go back and forth with feature selection (even

feature engineering) and model tuning. Even though in general

some features are better than some others, I found out that

different model have a slightly different favor for features. I

turned out need to do feature selection for each model.

The second lesson I learned is that good features is more

important than fancy models. I spent too much time trying and

tuning different models only to find out eventually that some of

my activity count features are bad. And when I finally realized

that, I turned out don’t have enough time to tune each model

for my new feature space.

VI. CONCLUSION

In this project I worked on building models to get best of

prediction about dropout probability in MOOC platform. Given

the interest irregular three-dimension dataset, I tried different

models, tuned the parameters and ensemble them together to

reach good accuracy. In addition from that, I implemented the

LSTM network to predict dropout probability based on the

daily data in 30 days. In the future, I believe diving into LSTM

when predicting the dropout prediction based on day-base data

will be promising.

REFERENCES

[1] G. Dekker, M. Pechenizkiy, J. Vleeshouwers, "Predicting

students drop out: a case study", Educational Data Mining 2009,

2009.

[2] R. F. Kizilcec, C. Piech, E. Schneider, "Deconstructing

disengagement: analyzing learner subpopulations in massive

open online courses", Proceedings of the third international

conference on learning analytics and knowledge, ACM, pp.

170-179, 2013.

[3] J. Kim, P. J. Guo, D. T. Seaton, P. Mitros, K. Z. Gajos, R. C.

Miller, "Understanding in-video dropouts and interaction peaks

in online lecture videos", Proceedings of the first ACM

conference on Learning@ scale conference, ACM, pp. 31-40,

2014.

[4] S. Moon, S. Potdar, L. Martin, "Identifying student leaders from

mooc discussion forums through language influence", EMNLP

2014, pp. 15, 2014.

[5] D. Yang, M. Wen, C. Rose, "Towards identifying the

resolvability of threads in moocs", EMNLP 2014, pp. 21, 2014.

[6] Liang, J., Li, C., & Zheng, L. (2016, August). Machine

learning application in MOOCs: Dropout prediction. In

Computer Science & Education (ICCSE), 2016 11th

International Conference on (pp.52-57). IEEE.

[7] KDD Winner white paper: http://www.conversionlogic.com/wp-

content/uploads/2016/06/Whitepaper- KDD2015-JYL.pdf

[8] A. Graves and J. Schmidhuber, "Framewise phoneme

classification with bidirectional LSTM networks," Proceedings.

2005 IEEE International Joint Conference on Neural Networks,

2005., Montreal, Que., 2005, pp. 2047-2052 vol. 4.

doi: 10.1109/IJCNN.2005.1556215

[9] A. Graves, A. r. Mohamed and G. Hinton, "Speech recognition

with deep recurrent neural networks," 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing,

Vancouver, BC, 2013, pp. 6645-6649.

doi: 10.1109/ICASSP.2013.6638947

[10] D. P. Gaikwad and R. C. Thool, "Intrusion Detection System

Using Bagging Ensemble Method of Machine Learning," 2015

International Conference on Computing Communication

Control and Automation, Pune, 2015, pp. 291-295.

doi: 10.1109/ICCUBEA.2015.61

[11] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic

regression: a statistical view of boosting. Annals of statistics,

38(2):337– 374, 2000.

[12] Tianqi Chen , Carlos Guestrin, XGBoost: A Scalable Tree

Boosting System, Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, August 13-17, 2016, San Francisco, California, USA

http://www.conversionlogic.com/wp-content/uploads/2016/06/Whitepaper-%20KDD2015-JYL.pdf
http://www.conversionlogic.com/wp-content/uploads/2016/06/Whitepaper-%20KDD2015-JYL.pdf
https://dl.acm.org/citation.cfm?id=2939785&CFID=1016888356&CFTOKEN=67616743
https://dl.acm.org/citation.cfm?id=2939785&CFID=1016888356&CFTOKEN=67616743
https://dl.acm.org/citation.cfm?id=2939785&CFID=1016888356&CFTOKEN=67616743
https://dl.acm.org/citation.cfm?id=2939785&CFID=1016888356&CFTOKEN=67616743

