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Abstract — In this project, I built model to predict dropout in 

Massive Open Online Course(MOOC) platform, which is the 

topic in KDD cup 2015. Different from full dataset in KDD, I 

only had partial dataset (36% enrollments). With my feature 

engineering result on this complicated three-dimensional dataset, 

I first explored different models and optimized parameters 

selection to reach best performance. With few models of good 

prediction on validation data, I ensembled them together using 

XGBoost Classifier to do a second level learning based on the 

first level training prediction. In addition, I implemented Long 

Short Term Memory(LSTM) Recurrent Neural Networks with 

Keras on 30 days univariate Time series data and reached 0.857. 

I. INTRODUCTION  

Massive Open Online Course (MOOC) has been 

revolutionizing the way people getting education. However, it 

also raises up concern that MOOC has very high dropout rate 

relative to traditional classes. An accurate prediction of dropout 

becomes very important because it can help MOOC course 

developers to adaptively tune web designs to students with 

high dropout rate.  

II. RELATED WORK 

Student dropout prediction has been tapped using machine 

learning technique with different approaches. Dekker et al. 

(2009) [1] used decision trees algorithm to predict university 

students’ dropout based on their behavior features extracted 

from their previous courses. However, this detailed information 

is usually missing for MOOC students. On the other hand, 

MOOC course has its own advantage on recording students’ 

behavior: every single behavior is done online and thus 

tractable. Monn et al. (2014)[4] used natural language 

processing techniques to analyze student’s post in the course 

discussion forum. Yang et al. (2013) [5] used NLP to predict 

whether a question posted in the discussion forum is resolved 

or not. But none of the NLP based work directly predicted 

dropout. Kim et at. (2014) [3] analyzed students’ watching 

video pattern to do the dropout prediction. These patterns 

include skipping, zooming, playing, panning, pausing and 

quitting. They use a small dataset because it is very demanding 

to extract these behavior patterns.  

Liang et at. (2015) [6] has published their work based on the 

same dataset. They reached 89% accuracy in dropout 

prediction task with gradient boosting decision tree model. The 

winning solution of KDD Cup 2015 used multi-stage model 

ensemble to do the prediction. They achieved the accuracy of 

90.92%. The only write up of their work is a brief white paper. 

They announced that they trained 64 classifiers with 8 different 

algorithms and different subsets of extracted features; then they 

blended predictions of classifiers with the multi-stage ensemble.  

III. DATASET AND FEATURES 

A. Dataset Description 

The data comes from online open source. There are totally 

three major files used for training, 

▪ enrollment_list.csv:  

each line is a course enrollment record with an 

enrollment_id E, a user_id U and a course_id C, indicating 

that U has enrolled in C. 

▪ activity_log.csv: 

each line is a behavior record called "event". Each event 

contains the following information: enrollment_id, time, 

and event. Here event can be as follow, 

problem - working on course assignments 

video - watching course videos. 

access - accessing other course objects except videos and 

assignments 

wiki - accessing the course wiki 

discussion - accessing the course forum 

navigation - navigating to other part of the course. 

page_close - closing the web page 

▪ train_label.csv: 

each line is a dropout record of the enrollments in the test 

set, which you are required to predict. 

B. Dataset Preprocessing 

Different from entire dataset of in KDD cup 2015 

(8,157,278 logs from 120,543 enrollments as training and 

5,387,848 logs from 80,363 enrollments as test), I only get 

partial dataset (36% enrollments compare to original dataset) 

and I split it into 46,288 enrollments as train set, 11,572 

enrollments as dev set and 14,465 enrollments as test set. As 

observed from dataset, the maximum length of one course is 30 

days. And with course period of 30 days, I process dataset and 

divide them into three subsets with different information in 30 

days per each enrollment ID, 

▪ count for each of seven events frequencies in 30 days 

(30x7) 

▪ count for total events frequencies in 30 days (30x1) 

▪ total consuming time each day in 30 days (30x1) 

 



In addition, I also have count and time for each week of 30 

days. Since there are only 39 types of courses in total, I treated 

it as a categorical feature. Thus, I one-hot encoded course type. 

For each student, course type feature is a vector of length of 39.   

I also extracted a few other features of interests. For 

example, unique event count indicates how many types of 

activity this student has conducted during the whole learning 

process. A student how has never used the discussion panel 

might have higher chance of dropout than a student who are 

making fully use of all the functions in the MOOC. See Table 1 

for feature summary.  

 

 

Table 1 Feature Summary 

C. Feature Selection 

As I have extracted about 320 features from the dataset, I 

need to do the feature selection, not only for training speed, but 

also improve the prediction accuracy. Basically, what I did in 

this stage was separating the features in each enrollment into 

two sets, with drop and not drop case. I plotted the bar plot and 

bivariate kernel density estimate plot. 

For bar plot, I can see the bar size difference between drop 

and not drop case in specific features. With similar bar size 

between drop case and not drop case, it means this feature 

would not differentiate drop case from not drop case and vice 

versa. I mainly observed daily-base data in bar plot in 30 days 

length. For example, Figure 1 shows the average daily total 

event frequency count and total online time in each day of 30 

days course length on drop (blue) and not drop (red) case. As 

you can see in both plots, besides day one, data in every other 

days have large size difference. 

 

 

Figure 1 bar plot of daily event count and daily online Time 

between drop(blue) and not drop (red) 

I also came out with bar plot about average count for each 

of 7 events in each day in 30 days period between drop and not 

drop case. I came to similar conclusion as shown above. 

In addition, for kernel density estimate plot, I can see the 

density distribution in specific feature between drop case and 

not drop case. If it is a good feature, peak in the plot between 

drop and not drop case will be different. The larger the gap 

between peak of drop and not drop, the better the feature. I 

mainly observed other general features total or average in 30 

days. For example, as you can see from the below Figure 2, 

two features, total days in 30 days with access activity and 

average event frequency count in 30 days, has different density 

distribution. It is clearly that access_days here would be a 

better indicator for enrollment drop than average event count. 

 

 

Figure 2 Histogram for features access_days and 

average_event_count in drop and not drop case 

IV. METHODS  

A.  LSTM 

An LSTM layer consists of a set of recurrently connected 

blocks, known as memory blocks. [8] These blocks can be 

thought of as a differentiable version of the memory chips in a 

digital computer. [8] Each one contains one or more recurrently 

connected memory cells and three multiplicative units – the 

input, output and forget gates – that provide continuous 

analogues of write, read and reset operations for the cells. [8] 

One shortcoming of conventional RNNs is that they are 

only able to make use of previous context. [9] Bidirectional 

RNNs (BRNNs) do this by processing the data in both 

directions with two separate hidden layers, which are then fed 

forwards to the same output layer. [9] Combining BRNNs with 

LSTM gives bidirectional LSTM, which can access long-range 

context in both input directions. [9] 

By taking advantage of LSTM and BRNN, I built LSTM 

model with following framework, 

 

 
Figure 3 LSTM framework 

B. Model ensemble learning 

Ensemble learning helps improve machine learning results 

by combining several different models. It would help 

decrease variance (bagging), bias (boosting), or improve 

predictions (stacking). [10] 

1) Bagging  

Bagging is the very first and simple way of output 

aggregation. It’s way to reduce the variance of an estimate is to 

average together multiple estimates. One simple bagging 

example is shown in following, 



 
In this project, I used three classifiers to do the bagging 

ensemble, which are Logistic Regression Classifier, Gaussian 

Naïve Bayes and Support Vector Classifier. In each of the 

models, I tuned the parameter using GridSearchCV algorithm 

to reach a competitive performance in single model training 

before bagging ensemble them together. 

a) Logistic Regression 

Logistic Regression is an simple and very first model I tried 

and it can help us have a basic impression and expectation 

about the data and model. Logistic Regression prediction can 

be demonstrated with following two formula, 

 

b) Gaussian Naïve Bayes 

Gaussian Naïve Bayes is an extension of Naïve Bayes, with 

addition assumption of Gaussian distribution. It’s the common 

and easy way to work with. The likelihood of Gaussian Naïve 

Bayes can be expressed as following formula, 

 

c) Support Vector Classifier 

Support Vector Classifier is a large margin classifier, 

optimizing distance between positive and negative hyperplane. 

With geometric margin of  with respect to training set 

, SVM can be demonstrated by 

following formula, 

 
2) Boosting 

Boosting is another way of model ensemble which can help 

optimized the weak part that each of the classifier learned in 

the last round. In another word, more weight is given to 

examples that were misclassified by earlier rounds. 

a) Gradient Boost 

Gradient boosting Classifier would first optimize its loss 

function, predict the weak learning and subsequently add weak 

learner to help optimize the loss. Detail algorithm can be 

demonstrated as below, 

 

 

Table 2 Gradient Boost Algorithm [11] 

b) XGBoost 

The system is optimized for fast parallel tree construction, 

and designed to be fault tolerant under the distributed setting. 

XGBoost can handle tens of millions of samples on a single 

node, and scales beyond billions of samples with distributed 

computing. [12] Following is the algorithm about how XGBoost 

works,  

 

 
Table 3 XGBoost algorithm [12]  

 

In this project, I did a two-level learning where XGBoost 

model was used for second-level boosting of four models. 

Detailed design is shown as following figure,  

 

 

Figure 4 XGBoost two-level learning framework 

V. EXPERIMENTS & RESULTS 

With the selected features, I started to implement the two 

ways of dropout rate prediction described in above section. 

Together with total labels of ground truth dropout result, I first 

split the extracted features with enrollment ID into two parts, 

use set and test set, with portion of 4:1. In addition, I continued 

to separate  use set into train set and validation set. When doing 

the model training, I fit model using the train set and used the 

validation set to do the cross validation to get the score 

(logloss, accuracy or AUC). During the training stage, in order 

to reach best performance of one model, I used GridSearchCV 

to tune parameters and got the best parameters as model 

parameters before stacking them together. When evaluating the 

model, score and confusion matrix would be used. 

A. LSTM 

Long short-term memory (LSTM) is a special case for 

Recurrent Neural Network and it’s designed to avoid long-term 

dependency problem. It can remember information for long 



period of time. This is because in this architecture a unit can 

transfer the information back to itself in different time steps.  

Long-short Term Memory is also a variant RNN which is 

easier to train because it is immune to the exploding and 

vanishing gradient problem of traditional RNN. 

In this project, given the daily-based features I extracted in 

the III.B (daily seven event frequency count, daily online time 

and total event frequency count), I first tried a LSTM networks 

first with all the daily activity measures. I used Keras with 

Tensorflow as backend. The model summary can be seen in 

Table,  

 

 
Table 2 LSTM model summary 

 

There are four variables for LSTM model, number of 

neuron, number of epochs, number of batch and whether 

LSTM is bidirectional or not. I tuned each of the parameters 

one by one using gridsearch. The best result is given by the 

model with the stacked two-layer bidirectional LSTM followed 

by a sigmoid unit, with batch size=200. The input size is 

7(daily activity count for each event) + 7(daily online time) * 

30 (days) and output is the probability of dropout.  

Figure 2 is the learning curve for the training and validation 

stage.  

 

 

Figure 5 Log loss and accuracy for                                      

two-layer bidirectional LSTM Model 

The evaluation accuracy is 85.8%. It is not my best model 

but I don’t consider it a failure. I think a potential improvement 

is that I should use real time-series data which I extracted from 

the same time points for every observation instead of defining 

day1 to day30 according to their individual start time. This way 

I will end up with different lengths of sequences for each 

student. And I will pad them to feed in the LSTM model.  

B. Model ensemble learning 

1) Bagging  

With GridSearchCV on three models in bagging, Logistic 

Regression would reach its best performance in ‘C=1’ and 

Support Vector Classifier would reach its best performance in 

‘C=0.001’ and Linear Kernel. With mean bagging of Logistic 

Regression Classifier, Gaussian Naïve Bayes and Support 

Vector Classifier, the result can only slightly improve 0.1%.  

2) Boosting 

a) Gradient Boost 

Beside Gradient Boost, I also tried other decision tree 

classifiers, like Extra Tree and Adaboost; while Gradient Boost 

has better performance on accuracy and learning curve, as you 

can see in the figure. The best parameters for my GBDT is 

deviance loss with 180 trees of maximal depth 5 and min 

samples leaf of 2. The max features are 60% of total features.  

 

 

Figure 6 Learning curve of GBDT 

Confusion matrix for GBDT in final test set is true negative 

number is 1,597, false positive number is 1,429, false negative 

number is 492 and true positive number is 10,947. Precision = 

TP/(TP+FP) = 0.873, Recall = TP/(TP+FN) = 0.957 and false 

positive rate = FP/(FP+TN) = 0.472. Normalized confusion 

matrix figure is shown in the following, 

 

 

Figure 6 Confusion matrix (GBDT) 

b) XGBoost 

As mentioned in the previous part, Gradient boosting 

classifier is used as second level boosting ensemble to further 

predict the output from the earlier 4 first-level predictions from 

linear Logistic Regression, Support Vector Classifier, Gaussian 

Naïve Bayes and Gradient Boosting Decision Trees. The final 

evaluation accuracy is 0.876.  

C. Discussion 

As observed by the result, I can see that model ensemble, 

especially decision tree classifiers are comparably better than 



one single classifier like Logistic Regression, Naïve Bayes and 

Support Vector Classifier. This is because decision tree can 

handle non-linear features and have interactions between 

different features, comparing to simple classifiers like Logistic 

Regression. 

For the issue of overfitting and underfitting, I mostly 

observed it from the training error/score and validation 

error/score to see if there’s any overfitting, as suggested in the 

classes. The Stacked LSTM model also seems over-fit the 

problem. It can be seen from the learning curve (Figure 5) that 

even though the model already converged, my evaluation 

accuracy is still lower than the training accuracy. Looking back, 

I think it is because I didn’t shuffle the data before every epoch 

and my model is a little complex.  

The first lesson I learned is that in the real problem, we 

always need to go back and forth with feature selection (even 

feature engineering) and model tuning. Even though in general 

some features are better than some others, I found out that 

different model have a slightly different favor for features. I 

turned out need to do feature selection for each model.  

The second lesson I learned is that good features is more 

important than fancy models. I spent too much time trying and 

tuning different models only to find out eventually that some of 

my activity count features are bad. And when I finally realized 

that, I turned out don’t have enough time to tune each model 

for my new feature space.  

VI. CONCLUSION 

In this project I worked on building models to get best of 

prediction about dropout probability in MOOC platform. Given 

the interest irregular three-dimension dataset, I tried different 

models, tuned the parameters and ensemble them together to 

reach good accuracy. In addition from that, I implemented the 

LSTM network to predict dropout probability based on the 

daily data in 30 days. In the future, I believe diving into LSTM 

when predicting the dropout prediction based on day-base data 

will be promising. 
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