Machine Learning for Professional Tennis Match Prediction and Betting

Andre Cornman, Grant Spellman, Daniel Wright

Abstract

Our project had two main objectives. First, we wanted
to use historical tennis match data to predict the outcomes
of future tennis matches. Next, we wanted to use the predic-
tions from our resulting model to beat the current betting
odds. After setting up our prediction and betting models,
we were able to accurately predict the outcome of 69.6% of
the 2016 and 2017 tennis season, and turn a 3.3% profit per
match.

1. Introduction
1.1. Motivation

Tennis is an international sport, enjoyed by fans in coun-
tries all over the world. Unsurprisingly, professional tennis
players come from an equally diverse background, drawn
from countries throughout North America, South America,
Europe and Asia. From each of these regions players come
equipped with different playing styles and specialties. In
addition to this, tennis fans know that the sport is played
on three unique surfaces (clay, grass, and hard courts), each
lending itself to different play strategies. There are a huge
number of variables that define each and every tennis match,
making the sport both exciting and unpredictable. Being
tennis fans ourselves, we decided to move away from our
gut instincts and take a new approach to predicting the out-
comes of our favorite matches.

1.2. Project Outline

The data from our project came primarily from author
and sports data aggregator Jeff Sackmann [1l], as well as
betting data from Tennis-Data.co.uk [2]. See the dataset
section for more details. Once we combined and processed
this data, we tried fitting it to different models to see see
which prediction model yielded the best performance for
predicting match outcomes. The classification models we
tried include logistic regression, SVM, random forests and
neural networks. Finally, we incorporated our prediction
model into a single shot decision problem to decide, for a
given match, who to bet on, or whether to bet all.

1.3. Related Work

There are a number of papers related specifically to mod-
eling and machine learning techniques for tennis betting.
Barnett uses past match data to predict the probability of a
player winning a single point [4]. This prediction is then ex-
tended to predict the probability of winning a match. Their
approach claims a 6.8% return on investment for the 2011
WTA Grand Slams. Clarke and Dyte used a logistic regres-
sion to predict match outcomes by using the difference in
the ATP rankings of players [5]. Both of these models used
a single feature to predict outcome. However, Somboon-
phokkaphan used artificial neural network (ANN) using a
number of features (including previous match outcomes,
first serve percentage, etc.) [6]. This model had a 75% ac-
curacy for predicting matches in the 2007 and 2008 Grand
Slam tournaments.

2. Datasets

Tennis match data was retrieved from an open source
data set available on GitHub [1]. It includes all match re-
sults from the Open Era (1968) to September of this year.
More recent matches (after the year 2000) include match
statistics such as the number of aces hit, break points faced,
number of double faults, and more. Betting data was re-
trieved from [2], which has odds from various betting ser-
vices from 2001 on. The data here also includes match
scores. Ultimately, these two datasets had to be merged so
that we could incorporate the betting odds into our predic-
tion model along with the match results and statistics. We
were able to merge about 93% of the data. The merged
dataset has 46,114 matches. This was split into a training
set of size 41,324 and a test set of 4,790 (roughly a 90-10
split).

In the data, the statistics, odds, etc., were labeled only
for the winner and loser, so for each match we randomly
assigned “Player 1” to be either the winner or loser, and
“Player 2” to be the other person. We also added a la-
bel for each match as to whether Player 1 won the match.
This would be the label that our model would try to predict.
These random labellings were done once as part of our data
pre-processing and then were held constant through the rest
of the project.

2.1. Feature Engineering and Selection

The merged data set offered a large number of poten-
tial features that we could use to train our model, includ-
ing player rankings, ranking points, age, height, as well as
in-match statistics including aces, break points and double
faults.

In addition to these features, we also computed a num-
ber of our own features to capture a player’s recent perfor-
mance. For each match, we calculated the average of each
match statistic over the most recent 5, 10, and 20 matches.
Finally, we calculated a players head to head record against
their opponent, both overall and with respect to the given
play surface. Altogether, we hoped that these additional
features could help quantify the current state of a player’s
game.

All features were of the following form:

FEATUREl = STATi,playerl - STATi,playerQ

This means the features we trained on were all differ-
ences between certain statistics about the players (such as
ranking, ranking points, head-to-head wins, etc.). This was
done to achieve symmetry. We wanted a model where the
labeling of the players as Player 1 or Player 2 doesn’t mat-
ter. This would help us to avoid any inherent bias to/for the
player randomly labeled as “Player 17 [3].

3. Methods

We decided to try a number of machine learning algo-
rithms. We briefly summarize how each works below.

3.1. Logistic Regression

In logistic regression, we have a hypothesis of the form:
ho(a) = 9(672) = —— 5
14 e 072’

where g is the logistic function. We assume that the binary
classification labels are drawn from a distribution such that:

Py =1]z;0) = hy(x)
P(y=0]z;0) =1— he(z)

Given a set of labeled set of training examples, we
choose 0 to maximize the log-likelihood:

06) = "y log h(a?) + (1 = y) log(1 — b))

We can maximize the log-likelihood by stochastic gra-
dient ascent under which the update rule is the following
(where « is the learning rate) and we run until the update is
smaller than a certain threshold:

0+ 0+ a(y? — hy(z@)z®

3.2.SVM

While fitting our data to an SVM model, we tried a num-
ber of kernels with varying results. In general, a SVM
model solves the problem for a data set (z(¥), (")) where
1 =1,2,...m, given by

ming p L st 4@ > 1 foralli = 1,2,..m

where the geometric margin () is equal to

A = y(i)((ﬁ)%(i) + \Till)
The specifications for the SVM problem shown here are
given by Stanford CS229 lecture notes, and further details
and intuition for the SVM problem can be found there [7].

3.3. Neural Network

A neural network is composed of “layers.” The input
to each layer is either the data itself or the output from a
previous layer. Each layer applies a linear transformation to
the data and then an activation function, which is typically
nonlinear. Mathematically, this is represented as:

2 = il gli=11 4 pld]
alll = g (=l

Here o[l represents the output vector for each layer and
g is the activation function. The output of the last layer is
the output of the network. The input to the first layer al is
the original data, x.

The neural network needs to learn the weight arrays,
W and biases, bl). This can be done by “back-
propagation” which uses gradient descent (typically batch
gradient descent) to update the parameters until conver-
gence. In batch gradient descent, rather than using just a
single example (stochastic gradient descent) or the entire
dataset to calculate the gradient of the parameters, the gra-
dient is computed for “batches” of data. The batch size of
the gradient descent is a hyperparameter of the algorithm.

3.4. Random Forest

A random forest model is a nonparametric supervised
learning model. It is a generalization of a random tree
model in which several decision trees are trained.

A tree is grown by continually “splitting” the data (at
each node of the tree) according to a randomly chosen sub-
set of the features. The split is chosen as the best split for
those features (meaning it does the best at separating posi-
tive from negative examples).

A random forest is made up of many trees (how many is
a hyperparameter of the model) trained like this. Given a
data point, the output of a random forest is the average of
the outputs of each tree for that data point.

4. Experimental Results

We first discuss the results for the machine learning clas-
sification algorithms we tried.

Model Train | 5-Fold CV
Random Forest 73.5 | 69.7
Neural Network 81.8 | 65.2
(1 HL, 300 nodes, logit.)

SVM
— Linear Kernel 69.8 | 69.9
— RBF Kernel 51.0
— Polynomial Degree 3 54.0%*
Logistic Regression w/L1 Reg. 69.9
Logistic Regression w/L2 Reg 69.7

Table 1. Training and 5-Fold Cross Validation Accuracies for

Models
*SVM with polynomial kernel was too slow to validate

4.1. Logistic Regression

Logistic regression had good accuracy in 5 fold cross
validation, however training the model was very slow to
run. We were able to perform tuning of the regularization
strength for L1 and L2 regularization, which both resulted
in low variance. We think that adding polynomial terms
might help, but we did not have the computational resources
to be able to carry out these experiments in a reasonable
timeframe.

4.2. SVM

We tried three different SVM kernels for our model:
RBF, polynomial, and linear. A general discussion of each
follows below. For the respective training model accuracies,
see Table 1.

1. RBF: Also known as the Gaussian kernel, the feature
mapping is of the form

—z 2
K(,2) = exp(— 125l

From the form of the kernel, we can see that it gives an
estimate of roughly how far apart « and z are. When
trying this kernel, the model was slow to train and
prone to over fitting, even as we tried various hyper-
parameters like the regularization strength. Because of
the size of our training set, and the non-linear nature of
the kernel, this model proved to be impractical.

2. Polynomial: The polynomial kernel has the form of

K(z,2) = (z72)?

for a d degree expansion of the features. We tried a
second degree polynomial fit. Similar to the RBF ker-
nel, the polynomial kernel was very slow to train and
prone to over fitting. This is likely due to our large fea-
ture space, where the polynomial kernel would create
a larger number of higher order term and cross term
features.

3. Linear: The linear term only uses a linear weighting
of the first order of the feature set. The linear kernel
proved to be the most appropriate for our data. It was
faster to train and allowed us to more finely tune the
hyper-parameters, further increasing prediction accu-
racy. In addition to this, we were able to experiment
with the ensemble library in sklearn to better estimate
the linear parameters. Ultimately, this kernel gave us
the best performance under the SVM model.

4.3. Random Forests

The random forest model had the advantage of being
much faster to train. This allowed us to more easily iter-
ate with the model. For example, it was easier to tune the
hyperparameters because training the model several times
for cross validation was not too computationally expensive.

One of the hyperparamters we tuned was the minimum
samples per leaf. When this was set to one, i.e., the leafs
could be as small as a single match, the training accuracy
was 100% while the cross-validation accuracy was only
around 69%. This represents poor generalization and ex-
treme overfitting to the training set. We tuned this param-
eter to be 50, which reduced the training accuracy to 73%
and increased the cross-validation accuracy modestly, im-
proving generalization.

Below is the calibration curve for the random for-
est model. For 10 “buckets” it plots the mean pre-
dicted value against the fraction of “positives,” which in
this case means player 1 winning. The curve shows
that the random forest model is extremely well cal-
ibrated. = This is important for our betting strategy.

Calibration Curve for Random Forest Model

10q e Perfectly Calibrated
—— RF Model on Test Data

0.8 1
0
)
2
2 0.6
o
a
k=
=
S 0.4
=
°
'S

0.2 4§

0.0 4

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Mean Predicted Value

One can extract “feature importances” from a random
forest model. These are computed as the mean decrease in
node “impurity” for that feature across all trees, where node
impurity is a measure of how separated the data is (by posi-
tive/negative label). Below are the estimated feature impor-
tances from our trained random forest model.

Feature Importances

0.10 A

e

Figure 1. 10 most important features in the random forest model.
The black lines indicate the standard deviation of the importance
estimate (estimated as the standard deviation of the feature impor-
tance across trees). The feature importances are normalized to sum
to one over all features.

g

diff_Max

diff_Aw
diff_EX 4
diff PS
points

diff_age
diff_LB

diff_rank 4

diff_B365 -

diff_wins_last_20

diff_rank

The first five of these features refer to betting data:
“Max” refers to the best betting odds, “Avg” refers to the
average betting odds across all quoted odds, and “B365”,
“EX,” and “PS” refer to the odds of specific betting ser-
vices. The most important non-betting related features are
the difference in rank, ranking points, wins in the last 20

matches, and, interestingly age.
4.4. Neural Network

We thought that a neural network might be useful in dis-
covering non-linearities. However, the accuracy of the neu-
ral network was not as high as the other models. It is possi-
ble that this would have improved if we continued to try to
tune the hyperparameters of the model (such as the number
of hidden layers, the nodes per hidden layers, the activation
function, etc.) but the time it took to train was prohibitive
to do on our own computers.

5. Betting Model Results

We developed a simple betting model that uses the out-
put of our random forest model and the odds data to bet on
the player that maximizes the expected returns. The odds
data is represented as two numbers per match (greater than
1). For example, if you bet correctly on player 1, who’s
odds are 1.5, then for each dollar you bet, you win 0.5 dol-
lars. However, if you bet incorrectly, you lose the initial bet
amount.

Bet

(unobserved)

Match

) - Chance Node Won

Reward
- Decision Node
¢ - Utility Node -
Model Betting
Output 0dds

Figure 2. Decision network for single-shot betting strategy.

We modeled our betting strategy as a single-shot deci-
sion problem for each match, where we aim to maximize
the expected earnings. This was a better approach than, say,
areinforcement learning approach because there is no sense
of underlying system dynamics in this setting: that is, there
is no real reason for one match to “transition” to another.
Instead, each match should be thought of as an independent
decision problem.

Possible actions include betting 1 dollar on player 1, bet-
ting 1 dollar on player 2, and not betting. The strategy
chooses the action with the highest expected reward:

b* = argmax E[U(win,odds,b)]
be{0,+1,-1}

On test set data, the betting strategy earns an average of
3.3% per match. Interestingly, the strategy takes the no bet
action 29% of the time, where the expected utility of betting
on either player is negative. We also find it interesting that
the betting strategy has streaks of winning, and streaks of

120 4

100 4

80

60+

40 4

Cumulative Winnings

T T T T T T
0 1000 2000 3000 4000 5000
Matches

Figure 3. Cumulative winnings on the test set for simple betting
Strategy.

losing, however we do not have a good explanation for this
result.

We computed the Sharpe ratio for our strategy over this
period. The Sharpe ratio is a commonly used evaluation
metric for strategies in financial markets and is defined as
the mean return over the standard deviation of the returns.
The Sharpe ratio for our strategy was 0.02, which would be
considered very poor in the financial industry. We think that
this can be explained by the substantial risk of losing all of
one’s money in a given bet, which causes the standard devi-
ation for the return across all bets to be quite high. People
who gamble on sports, one might hypothesize, are attracted
to risk, rather than averse to it.

6. Error Analysis

Below are tables, similar to confusion matrices, for our
random forest model on the test set. We see that most of
the time, the model is predicting the higher ranked player
and the favored player. (Here favored means the player has
more favorable odds.) In fact, on the test set, the model is
predicting worse than 50% when it predicts the disfavored
player.

Predicted Total # | Correct | Pct.
Lower Ranked Player | 814 486 59.7
Higher Ranked Player | 3976 2850 71.7

Predicted Total # | Correct | Pct.
Favored Player 4669 3279 70.2
Disfavored Player 121 57 47.1

This indicates that our model is not capturing insights
about when/why a lower-ranked or disfavored player would
win a match (and instead mostly relies on these features for
its predictiveness).

This aspect of the model could potentially be improved
by a dataset with richer features, such as injury informa-
tion about each player, more fine-grained statistics, weather,
coaching, strategy, etc.

7. Future Work

First and foremost, we are excited to try out our predic-
tion model on upcoming tournaments in the 2018 season.
Perhaps we can give ourselves an edge on the betting web-
sites.

As for our prediction model, it would be very interest-
ing to further explore and properly validate the models that
demanded more computational power than we had avail-
able to do our project. This would be relevant primarily for
the non-linear SVM models, logistic regression model, and
neural network model. Because of the size of our dataset
(approximately 45,000 rows with upwards of 80 features),
it was difficult to train and tune these models locally on our
machines. In particular, we were able to train these models
on our dataset, however, the difficulty came in when iterat-
ing over the hyper-parameters of these models. Given more
computational resources, we could optimize these hyper-
parameters. With regards to our betting model, one goal of
ours is to add more flexibility to our betting decision model.
For instance, our current model only makes $1 bets, or no
bets at all. It would be interesting to scale our bets to larger
or smaller amounts given the confidence reported by our
model. For example, we could adjust the bet amount based
on the difference between the model output probability and
the odds data probability of a player winning.

8. Contributions

8.1. Andre

I worked on setting up and implementing the betting
strategy.

8.2. Danny

I worked on merging the two datasets and on feature en-
gineering and building/testing models (logistic regression,
neural network, random forest).

8.3. Grant

I worked on setting up and testing all of the SVM models
we tried to fit to our merged data set. I cross validated these
models as well.

References

[1] https://github.com/JeffSackmann/tennis_atp , Jeff Sack-
mann

[2] http://www.tennis-data.co.uk/alldata.php

(3]

(4]

(51

(6]

(71

https://www.doc.ic.ac.uk/teaching/distinguished-
projects/2015/m.sipko.pdf , Section 3.1.2 Michal Sipko
and Dr. William Knottenbelt of the Imperial College
London

T. Barnett and S. R. Clarke. Combining player statistics
to predict outcomes of tennis matches. IMA Journal of
Management Mathematics, 16:113120, 2005.

S. R. Clarke and D. Dyte. Using official ratings to sim-
ulate major tennis tournaments. International Transac-
tions in Operational Research, 7(6):585594, 2000.

A. Somboonphokkaphan, S. Phimoltares, and C.
Lursinsap. Tennis Winner Prediction based on Time-
Series History with Neural Modeling. IMECS 2009: In-
ternational Multi-Conference of Engineers and Com-
puter Scientists, Vols I and II, 1:127132, 20009.

http://cs229.stanford.edu/notes/cs229-notes3.pdf ,
Stanford University, CS229 Lecture Notes, Andrew Ng

