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Abstract—This paper focuses on the problem of ”party playlist
generation”, where the ultimate goal is to generate a playlist for
a group based on the listening histories of a group of individuals.
We design a classification system which uses both frequency
data and song metadata to accurately gauge song similarity.
Comparing randomly generated playlists, a purely frequency
based approach, and the combined frequency and metadata
approach, we found that the addition of metadata resulted in
higher quality playlists.

I. INTRODUCTION

Suppose you walk into a party. The music is blaring, and you
cringe as you realize your least favorite pop song is playing.
Even worse, the whole night is probably going to be filled
with songs like this. But you already know there’s nothing
you can do about it - there’s one person who’s DJing and
their taste happens to not line up with yours. Every college
student has been in this sort of situation, seeing as party hosts
typically aren’t professional DJs. Our project looks to develop
a machine learning solution to this problem. Specifically, we
want to design a system that can use the individual listening
histories of many people to create playlists that will satisfy all
of them in some optimal way.

The input of our system is a list of listening histories of some
group of n individuals. Each listening history is comprised of
some number of songs, with repeats indicating multiple plays.
We then use a specially created model to output a new list
of m songs, representing the optimized playlist for the group.
There are two fundamental components to creating the model
necessary to realize this task. First, we have to establish a
metric to base song similarity comparisons on. Second, given
that metric, we need to determine how to create a playlist
that satisfies each member of the group in some optimal
way. Previous approaches tended to either focus solely on the
frequency data of the song or the metadata of the song, but
not both; our system seeks to change that by combining both
metadata and raw frequency data to generate the playlist. More
precisely, we modeled songs based on 7 metadata features and
the MFCC matrix, which contains the preprocessed frequency
data. The MFCC matrices were modelled using a Gaussian
Mixture Model and distances were defined by approximating
the Kullback-Leibler divergence of the resulting distributions.
After adding in the metadata features, we used a heuristic
distance on a song dataset to get a list of candidates, and then
use the full feature set with a more precise distance calculation
to select our final playlist.

Our hope is that, ultimately, this project will render the
incompetent DJ a remnant of the past. Music can unite people,
and this project helps bring that potential into reality.

II. RELATED WORK

Previous work in the area of similarity search and playlist
generation has focused primarily on two distinct character-
istics: acoustic, frequency based approaches, and subjective,
metadata based approaches. We describe both, along with work
towards algorithmic optimization, below.

Frequency based approaches generally make use of the Mel
Frequency Cepstral Coefficients (MFCCs) of the song’s acous-
tic waveform. Autocouturier and Pachet introduced the idea
of discretizing a song into sets of MFCCs, modelling their
distribution with a Gaussian Mixture Model, and approximat-
ing the Kullback-Leibler (KL) divergence between two songs’
distributions using Monte-Carlo sampling to characterize the
similarity. [1] Tang ef al. use a similar approach but ap-
ply a different distance metric, the Earth Mover’s Distance
(EMD), which they claim more accurately approximates the
KL divergence. [2] Pampalk ef al. compare these two to a
variety of other frequency based models and find that the
EMD outperforms all other models. [3] However, it should
be noted that EMD is highly computationally expensive even
when optimized, which often limits its’ applicability. [4]
Berenzwig et al. showed that using either distance metric,
the EM algorithm to generate the model can be replaced
with a modified k-means algorithm followed by covariance
calculations to decrease computation time significantly without
loss in accuracy. Furthermore, they showed that using diagonal
covariances both reduced instances of singular covariances
and reduced overfitting. They compared 3 different distance
metrics and also found EMD to perform best. [4] In later
work, Pampalk proposed a modified distance metric, the Fast
Spectral Similarity (FSS), which she shows has slightly worse
performance than EMD but is an order of magnitude faster
to compute. [5] This metric has become increasingly popular
owing to it’s high performance and speed.

In regards to the metadata based approaches, many approaches
are quite similar to the approach of Cohen and Fan. They
characterize a user’s listening history according to a variety of
human generated metadata features and search for other users
who have similar histories. They then recommend songs which
have not yet been listened to but are popular among similar
users. [6] While frequency based approaches are popular
in the academic community, collaborative filtering based on
subjective features is generally used in industry applications.
It is our goal to unify these two approaches into one.

III. DATASET AND FEATURES
A. Initial Scraping

We used a subset of the Million Songs Dataset [7] as our
foundation for data generation. The Million Songs Dataset
contains songs and a large number of quantitative and more



qualitative features corresponding to each song. To access
songs in the dataset and create sample listening histories, we
modified code from [8]. To create song histories, we hand
selected eighty songs from the subset that we felt would
be somewhat recognizable for the general population. This
recognizability was critical to get reliable survey results, but
was nontrivial since the dataset was created more than six
years before this project was implemented. We also created
a dataset with 100 songs based on similar constraints to
be used in the playlist generation step. Though there were
many potential features in the million songs dataset, we ended
up selecting eight: Tempo, Duration, Loudness, Familiarity,
Hotness, Danceability, Energy, and the MFCC matrix. The first
seven of these features are scalar metadata, while the eighth
is a matrix containing frequency data.

B. MFCC Matrix

Frequency data is represented in the form of Mel Frequency
Cepstral Coefficients (MFCCs), which have been shown previ-
ously to work well for audio classification. [9] [3] MFCCs are
calculated by first taking the discrete time Fourier transform
of a signal, then mapping the log powers of the spectrum
onto the mel scale, which approximates human perception of
acoustic power. Finally, the MFCCs are obtained by taking
the discrete cosine transform of the result. We were provided
the final results of this calculation on each song in the dataset
in the form of a 12 x n matrix, where n is proportional to
the duration of the song. Each column has the cepstral data
for a single time interval spanning on the order of a few
milliseconds. Because humans generally do not perceive audio
at the millisecond level, we used the standard approach for
processing these MFCCs espoused by the European Telecom-
munications Standards Institute (ETSI), in which consecutive
MFCCs in a small sliding window spanning about 25 ms are
concatenated into a single vector. [9] The entire song is thus
represented by a set of these MFCC vectors, each of which
consists of cepstral data over 25 ms. A heat map of one such
MFCC matrix is shown in Figure 1. The rectangle shows one
such range of MFCC coordinates that is concatenated after the
aforementioned prepossessing.
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Fig. 1: A heat map of a sample MFCC matrix. The dotted black
box shows consecutive MFCC vectors that we concatenate.

Ultimately, we want to convey the information in the MFCC
matrix as a scalar distance metric. The process for doing so is
detailed in the methods section.

C. Normalization

The eight features we selected have very different scales.
Some features, like Hotness, operate on a 0 to 1 scale while
others, like Tempo, are in the 100s. We needed to normalize
the features for the Euclidean distance to be reasonable. To
normalize we followed the following process:

1) Extract average feature values for different sets of songs

2) Normalize with respect to the inverse some distance

metric within features
This gave us a good starting point. From this point, we
manually tuned the weights further by systematically adjusting
them based on outputs on a training example and iteratively
testing different combinations.

IV. METHODS

At a high level, we implemented k-means clustering using a
weighted euclidean distance on the songs. The scalar metadata
features lent themselves easily to this approach; however, it
was considerably more difficult to define a sensible scalar
distance between MFCC matrices. The majority of the methods
we developed were aimed at addressing this problem.
Motivated by previous work by Autocourtier and Pachet [1],
we chose to model the distribution of the MFCC vectors using
a Gaussian Mixture Model. Given the model for two songs,
we could then calculate the KL. divergence between their two
distributions as the distance between their MFCC matrices.
However, no closed form solution or efficient algorithm for
calculating the KL divergence between two Gaussian Mixture
Models is currently known, so it was necessary to look for
reasonably accurate alternatives.

A. Fast Spectral Similarity

The most exact approach to approximating the KL diver-
gence between the two Gaussian Mixture Models for two
songs would be to compute the “generation probability”, the
probability that the songs were generated from each others’
distributions. More precisely, we would take all the MFCC
vectors in song A and compute the log likelihood that those
vectors were drawn from the model for B, add the log
likelihood that the vectors for B were drawn from the model
for A, and normalize by subtracting the log likelihood of the
vectors for A and B being drawn from their own models.
Letting S be the set of MFCC vectors for song A, we are
thus computing

GP(M*A, MP; 54, 88) = (S| MP) + ¢(SB|M*)
—0(SHMA) — ¢(SP|MP)
We let xf‘ be the i-th MFCC vector in song A, N4 be the total
number of MFCC vectors, k4 is the number of Gaussians in
model A, PB be the prior probability of the j-th Gaussian in
model B, and N (z|M}) to be the probability of drawing x
from that j-th Gaus51an of model B. Then we can use Bayes
rule to define
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However, given the number of vectors in each song (10°—10°),
it is impractical to calculate these likelihoods. Therefore,
it is necessary to sample some of the MFCC vectors and
approximate the generation probability using that sample. But
a random sample has a small probability of being a poor
representation of the true distribution, which would cause large
error in the calculated distance.

A solution to this sampling problem is presented by Pampalk.
He proposes a modified version of this method in which
the same general formula is used but instead of sampling
randomly, the means of the model are used. [5] Thus, we have

FSS(MA, MEB; 84,88y = 0(S4|MPB) + ¢(SB|M*)
—0(SA | MA) — 0(SB|MP)

Where, by applying the Law of Total Probability twice and
defining ' as the i-th mean in model A, we have
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FSS is fast to compute in comparison to other methods (in
particular the Earth Mover’s Distance discussed in [2]), and is
still a good approximation to the distance.
A sample heatmap of FSS distances between 5 songs is shown
in Figure 2. The songs are:

0) Rihanna: Don’t Stop the Music

1) Kanye West: Through The Wire

2) Nirvana: Heart-Shaped Box

3) Kanye West / Adam Levine: Heard ’Em Say

4) Rihanna: Music Of The Sun
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Fig. 2: A sample heatmap of the Fast Spectral Similarity matrix
for five songs.

Those familiar with these songs will recognize that these
distances are reasonable; the major outlier is Heard ’Em Say,
which makes sense given it’s unique beat and high frequency
piano component. This demonstrates that our work to convert
MFCC matrices into a usable feature has been successful.

B. Centroid Distance

Another approach which yields a fast and simple approxi-
mation to the KL divergence between two Gaussian Mixture
Models is the centroid distance, which is defined simply as the
sum of distances between all means in song A to all means in

song B. Mathematically, the centroid distance between models
MA and M?P is defined
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While very fast, this approach suffers from some inaccuracy
since it discards information about the covariances of the data.
We thus only use it as a heuristic in our system.

C. Collapsing K-means

Ordinarily the parameters of the Gaussian Mixture Model
would be fit using the EM algorithm; however, the EM
algorithm is fairly computationally heavy so a faster alternative
was desired. Berenzwig et al. found that a k-means algorithm
can be used as a faster alternative to estimate the means of
the Gaussians. However, K-means clustering has the inherent
shortcoming that one must specify K, the number of clusters,
and there is no way to know a priori how many different
clusters of tones should be in a song. Imposing a single value
for all songs is therefore a large constraint. Motivated by
the work of Chen [10], we decided to use a modification
called the collapsing k-means algorithm for mean selection.
To implement collapsing k-means we run standard k-means
with a large number of clusters, but after each iteration if two
centroids are closer to each other than a certain threshold we
merge their clusters. Merged clusters can’t be merged again in
the same iteration.

The al%orlthm proceeds as follows, given a training set
{r(l L, @ (™) } to cluster and a merging threshold a.

1) [Initialize k cluster centroids {p1, o, ...pux } randomly.

2) Repeat until convergence:

a) For every i, set
¢ = argmin([2 — py[|?)
J
b) For every j, set
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D. Implicit k-means

We required an algorithm to cluster a list of songs, using a
list of scalar features as well as the fast spectral similarities
between each songs. Standard k-means fails here since we
don’t have a way to create an MFCC matrix for a cluster
centroid. We developed implicit k-means as a solution to this



challenge. The algorithm proceeds as follows, given a training
set {23, 2™} to cluster.

1) Calculate the nxn matrix S of fast spectral similarities.

2) Initialize k cluster centroids {1, o, ...u, } randomly
by choosing k of the MFCC vectors.

3) Initialize k cluster MFCC distance vectors
{s1,82,...8p+ by choosing the columns of S of
the corresponding indices of the mean initialization.

4) Repeat until convergence:

a) For every i, set
= argmjin(l\m(“ — wil1? + 135117

b) For every j, set
e S 1{c® =4} 2®
T X ) =5}
Yy 1{c =3} S8,
i 1{c® =5}

The distortion function is changed to
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Where S ; denotes the ith column of S. In words, we approxi-
mate the Fast Spectral Similarity between a centroid and each
song by the mean of the Fast Spectral Similarities between
every song in the cluster and that other song. We use this
approximation at every step in the k-means algorithm. While
we didn’t prove that this is strict coordinate descent on our
new J, the algorithm reliably converged on our test cases.

V. SYSTEM DESIGN AND RESULTS
A. Models

Using the algorithms described in the methods section, we
created three different models to evaluate: a baseline model
which randomly selected songs, a frequency based approach
which used only MFCC data, and our proposed model incor-
porating MFCCs and metadata. The design of the latter two
systems is described in more detail below and shown in Figure
3.

1) Take in N user histories (lists of songs) and combine
them into a weighted single song list. Weighting is
accomplished by duplicating each history by the least
common multiple of all the history lengths.

2) Transform each song’s MFCC matrix into a series of
concatenated vectors and run collapsing k-means to
obtain centers for the mixture of Gaussians model.

3) Assuming a diagonal covariance matrix, calculate vari-
ances for each cluster and maximize priors to obtain a
full mixture of gaussians model.

4) Run implicit k-means on the weighted list of songs
using the scalar features from the dataset and the
FSS between songs’ GMMs or only the FSS between
the GMMs, depending on the model. This k-means
clustering outputs a series of centroids representing the

interests that the combined song list was generated
from.

5) Taking in a song database, narrow down the database
to a list of candidates using centroid distance as a
heuristic. Specifically, for every song in the database,
calculate the distance to every centroid of the combined
song list, using the mean of centroid distances for the
last component. Pick the 1.5m songs with the lowest
distances as candidate songs.

6) To select the final set of songs, repeat the above process
on the list of candidates using the fast spectral similarity
for the last component and choose the m songs with the
lowest distance.

N user histories

Combine weighted
histories

.....................
............................................................
. LN

K MFCC Matrices
i (0
: 2

E Collapsing k-means
. Mean selection

E Construct Diagonal Covariance
H Matrices

[ Maximize Priors J

Scalar Features [
)

\ 4
{ Implicit k-means with FSS

¢ Interests Model <

GMM Parameters }— ...

B y .
Song Database = T T H
Apply centroid distance heuristic | 2

H { Full feature set for final selections } H

..............................

Final playlist

Fig. 3: Flowchart showing organization of system.

B. Hyperparameter selection

Our system had numerous hyperparameters to tune. To
select the max number of clusters and collapsing threshold for
the collapsing k-means algorithm, we estimated that a song
should have around one to ten clusters in the concatenated
MEFCC vectors space. This number was estimated intuitively by
considering how many different moods a typical song has, and
how much sound varies within a single mood. We therefore set
a ceiling of fifteen clusters and tuned the collapsing threshold
so that most songs finished with one to ten clusters.



The k-means on the combined song list was run with
four clusters. We chose this value because we found having
more genres than this in a single playlist made the playlist
incohesive.

We also had to determine a feature weighting for the k-
means on the combined song list - this is discussed in the
normalization subsection of the dataset and features section.

C. Testing procedures and evaluation metrics

To test our system, we developed four different sample song
histories of twenty songs each, each representing a group
of users with different listening trends. We used our three
models (random generation, frequency based, and frequency
+ metadata) to generate playlists for each history.

The inherent subjectivity of music similarity combined with
the fact that we were using an unsupervised learning algorithm
with no ground truths made evaluation difficult. Indeed, we
found no clear consensus in the research literature on the best
way to evaluate metrics of song similarity. However, Beren-
zweig et al examined multiple different popular evaluation
metrics and found that surveying independent music listeners
about artist similarity is an acceptable evaluation metric. [4]
We decided to follow this idea and survey about song similarity
to evaluate our system.

We surveyed twenty people about each of our test outputs,
asking which songs in the output were similar to the seed.
Because the dataset we used is relatively old (published 2011),
most of the people we surveyed were only familiar with two
of the four seeds, consisting of major pop and rock songs. As
a consequence, we were only able to report results for those
two.

D. Results and Discussion

The first ten songs of the pop seed and the playlist generated
are shown in figure 5 as an example of the outputs from our
system. Bold songs in the output were labeled as fitting with
the seed by more than half of people surveyed.

Let’s Get It... Black Eyed Peas
Forever Chris Brown Boys Britney Spears
My Life Would... Kelly Clarkson The Reason ...  Celine Dion

Talk About Us Jennifer Lopez Let’s Go Ray Charles
Don’t Stop the... Rihanna - Perkiomen Hall & Oates
Should’ve Said No Taylor Swift Matilda Mother  Pink Floyd

What Goes Around... Justin Timberlake Un Garcon Pas... Celine Dion

Moving Mountains Usher Everytime Britney Spears
Single Ladies Beyonce Show You How  The Killers
Poker Face Lady Gaga

Fig. 4: Pop seed and corresponding output. Bold songs were
indicated to fit seed by survey.

Our full survey results for the two genres where we could
collect enough survey data are shown in Figure 5. By using
only frequency data, our increase in accuracy over random
selection is similar to that observed by Berenzweig et al
(slightly under two times) [4]. Furthermore, adding in metadata

gave noticeable improvements for both seeds over only using
frequency data. These results support our initial hypothesis that
including metadata adds valuable information about high level
song structure that can improve performance of song similarity
measures.

We also manually analyzed the outputs of our other two
seeds (old rap and new rap/EDM) by listening to the outputted
songs to look for any obvious problems. Our analysis illumi-
nated one shortcoming of our system: there was a very small
amount of old rap present in our song database. While our
system selected a good percentage of the old rap that was
available for it to choose from, this still made up only a small
percentage of the final output playlist. This issue would likely
not be as large if we used a larger song database; however,
even at scale, this shows that our system may not work well
for users with very narrow or niche listening histories.

Playlist Generation Accuracy
0.70
0.60

0.50

0.40
0.30
0.20
0.10
0.00

Random Generation Frequency Data Frequency Data + Metadata

Hpop M Rock
Pop 20 8 0.25 0.36 0.49
Rock 20 8 0.24 0.47 0.59

Fig. 5: Fraction of output songs that fit seed based on survey.

VI. CONCLUSION AND NEXT STEPS

We developed a system to generate party playlists given
a set of user song histories. We used various unsupervised
learning algorithms, including two modified versions of the k-
means algorithm and approximations of the EM algorithm. We
found the accuracy of using our system with only frequency
information to be on par with previously published song se-
lection methods. Adding high level metadata gave a noticeable
increase in performance, showing the importance of including
the high level structural information that the metadata captures.

In the future, we’d like to examine multiple evaluation
metrics and see how consistent the accuracy of our system
is. We’d also like to try out our system on a more modern
dataset to make evaluation easier and allow the system to be
more usable. The system is still computationally expensive
and it would be nice to further optimize both the machine
learning algorithms and the system structure, again with the
goal of coming closer to a usable product. Finally, it would be
interesting to integrate with the Spotify or Apple Music APIs
to see what other types of data might be available.



VII. CONTRIBUTIONS

A. Erik

Erik developed the project idea along with Milind. He
was responsible for both selecting appropriate songs for the
final song dataset and most of the experimental sets, and
he modified and wrote new code to extract them from the
Million Songs Dataset, and write them into files. Erik also
did research on how to appropriately normalize and weight
different features for inter-song clustering, and then normalized
the weights enabling productive optimization. Along with
Milind, he implemented the reducing k version of k-means
for clustering a song’s MFCC cloud vector and, along with
Joe he both identified and debugged the notorious singular
covariance bug. The vast majority of this project was spent
in long group sessions where the project-team brainstormed,
tediously ran code, and debugged. Erik, along with everyone
else in the group, was an active participant.

B. Milind

Milind developed the project idea along with Erik, found the
dataset, and designed overall structure of the system (clustering
of songs, followed by an initial and intensive search through
the database). He helped out Joe a little with researching
ways to process the MFCC matrix. Along with Erik, he
implemented the reducing k version of k-means for clustering
a song’s MFCC clouds vectors. He also identified the problem
of clustering songs while including the MFCC matrix and
came up with the implicit k-means algorithm as a solution.
He then implemented and tested this algorithm. He developed
the final test sets that we report results for. He participated in
all the coding sessions towards the end of the quarter where
the system was tested and debugged extensively, and helped
with parameter optimization.

C. Zhaoyu (Joe)

Joe researched methods for modeling songs based on their
MEFCC coefficients and was the one to propose the mixture
of Gaussians model. In the process of researching this model
he also found and proposed the modified k-means algorithm
as an efficient alternative to the full EM algorithm. He was
the one to evaluate the various different distance metrics and
the one who learned about and decided on the Fast Spectral
Similarity method. On the implementation front, Joe wrote
the code for calculating both the Fast Spectral Similarity and
the heuristic centroid distance of two GMMs as well as the
code for formatting the MFCC matrix into a point cloud.
He also wrote and debugged the code for the aggregation of
user histories and the generation of a playlist based on the
cluster model. In the later stages of the project he managed
the codebase and refactored code as necessary to maintain
readability and make debugging easier. Like Milind and FErik,
he participated in all the coding sessions and helped with
debugging and parameter search.
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