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Abstract: We present an approach for online grocery shopping recommendation, framed as a binary classification
problem. We describe the methods we used to extract features from a recent data set by Instacart, and we compare
the results of our recommendation experiments with those of traditional and enhanced market basket analysis
approaches. We use approximate recommendation precision to measure the success of our recommender, and
ROC AUC values to evaluate some of our underlying classifiers. Although our recommendations were better than
the market basket analysis baseline, our best models learned primarily the purchase frequency of products.

1. Introduction
One of the major predictive questions facing retailers is which products consumers will purchase and when.
We explore a rich, recent data set of 3 million Instacart orders made by about 200,000 users[8], supplemented
with nutritional data from Open Food Facts[12]. The Instacart data includes information about the date and
time orders were placed, in what order items were placed in the user’s shopping cart, and even which virtual
departments and aisles the purchased products belong to. Instacart has already answered questions on
which products tend to be re-purchased and at what time of day, but some areas remain unexplored:

• Market basket analysis: Which items are often included in the same cart? It’s clear that chips and salsa
go together, but are there less obvious connections hidden in the data?

• Shopper types: Since we are given no information about users, can we uncover groups that behave
similarly? Which features allow us to deduce clear user clusters?

We focus our work on the problem of recommendation:

• Recommendation system: Given that a user has placed products P1, . . . , Pn−1 in their shopping cart,
what are the next best k products Pn, . . . , Pn+k−1 to advertise? Can shopper types or market basket
analysis inform the recommendation?

2. Related Work
Recommendation systems have been widely and fruitfully studied in recent years. The 2009 Netflix Prize
collaborative filtering competition is the most famous of many studies examining the best way to recommend
products and services to consumers. Grocery recommendations are a tougher nut to crack. Unlike Netflix,
which has a limited number of movies and TV shows to credibly recommend, grocery shopping presents a
challenge in its high sparsity. A grocery store stocks thousands of items, yet most people only buy a handful
of them at a time. Analysis of this question has included methods like basket-sensitive random walks[9] and
SVD approximations[13] to recommend items to consumers. Others have delved more into the theory, hoping
to lay out a process that incorporates both product and user features into a recommendation process. [14]

A problem specific to our methods, uneven class label size in binary classification, has been studied as
well. Work has been done in gauging the benefit of weighing to offset the class label skew[7], a method
we utilize via Sci-kit’s class_weight argument. The results are not always promising or consistent, with
at least one paper showing that improving classification scores on the underrepresented class comes at the
expense of overall classification. Other work has acknowledged the difficulty in measuring correctness with
class skew, recommending data and domain-specific approaches for evaluation[4]. The inconclusiveness of
research related to class label skew is reflected in a recent survey[3] and even in our own findings.
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3. Dataset
Our data set, made freely available by Instacart[8], contained the following information:

• Orders: 3 million orders. Includes user ID, product bought, order of purchase, time of order, and whether
each product was previously purchased by that user.

• Users: About 200,000. Only user ID’s given. User-specific features were derived by us for our models.
• Products: About 50,000 products available for purchase from Instacart, along with aisle and depart-

ment identifiers.1 We supplemented this data with Open Food Facts’ Nutri-Score[12], which rates the
healthiness of food products, using a fuzzy match on product name with the Instacart data.

3.1. Generating Training, Validation, and Test Sets for Each Model
3.1.1. (Smart) Baseline: Market Basket Analysis Dataset Generation

A random subset of 500,000 orders was used to generate a ”common order” list. This was a computationally
intense but conceptually simple process for counting the number of times products were ordered, along with
the number of times pairs of products appeared in the same cart.

3.1.2. Classification-Based Recommendation Models Dataset Generation
As previously mentioned, we cast the recommendation process as a binary classification problem. From
Instacart’s raw information, we constructed a data set of the following form:

T = {(φ(p, u, o), yp,u,o) : p ∈ Prec, u ∈ U, o ∈ O∗u} (1)

For a selected amount of unique users in the Instacart data U , and for a set of items from which to
recommend Prec

2, we constructed a meaningful set of sub-carts related to that user, O∗u.3 The extraction
of features φ(p, u, o) for each recommendation, user, and partial cart tuple is described in the next section.
Lastly, to match the structure of our recommendations, the value of yp,u,o was chosen as follows:

yp,u,o =

{
1, ∃o′ ∈ O∗u s.t. o is a prefix of o′ and p is the next item in the cart with o′

0, otherwise (2)

We built a dataset of this format using 116,990,000 examples (116,897,206 zero-labeled and 92,794 nonzero-
labeled). Splits for the training, validation, and test sets were chosen specific to each model (depending on
whether batch implementation was used), and are summarized in the results section.

4. Feature Extraction
We used various attributes for defining φ(p, u, o) in the generation of our training set. In addition, we conducted
user clustering and word2vec-based product and cart embeddings to develop additional features, described
in more detail below. Forward search wrapper model was used to select features from the following:

1) Cart-Based: number of products in the cart, last element placed in cart, cart embeddings, one-hot
representation of Prec items within cart.

2) Product-Based: nutrition score, aisle number, department number, food item or not, product embeddings.
3) User-Based: which cluster did the user belong to, average nutrition score, most common time of day,

most common day of week, likelihood of shopping in different departments.

4.1. User Clustering
We performed user clustering to categorize users based on their shopping behavior. K-means, agglomerative
clustering and affinity propagation were applied to various combinations of features. Since no ground truth
labels were available and since data points were visually found to belong to one large cluster or lay evenly
on the feature space, extraction and interpretation of distinct clusters became difficult. Therefore, we used
silhouette scores4 to evaluate the relative performance of each algorithm. We chose to categorize the users
into five clusters, which we directly used as a feature for our model.

1Note: The vast majority of products are ordered very rarely - 99.7% of products appear in less than 1% of orders.
2In our experiments we choose this to be the top 500 most popular products in the training data.
3For simplicity we used all of u’s cart prefixes, although we considered other methods like cart n-grams as well.
4A method to interpret and validate clustering techniques, in which a higher score is assigned to dense and well separated clusters.
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4.2. Product and Cart Embeddings
To capture the semantic meaning of the products within a cart, Google’s Pre-Trained News Vectors [10] were
used. Product embeddings were created by averaging the word vectors of each word in the product name[5].
Cart embeddings were constructed by averaging the product embeddings for every product in a cart.

5. Methods
5.1. (Smart) Baseline: Market Basket Analysis/Association Rules

Market basket analysis, also known as association rules in machine learning literature, is used widely in
market research to uncover interactions between products. We used the following metrics:

• Support of A, P (A), is the probability of a product A appearing in a user’s cart. As described above, the
vast majority of items for sale by Instacart are purchased very rarely; a marketer could do worse than
to recommend the most popular items, especially when lacking user information.

• Confidence A→ B, P (A∩B)/P (A), measures the probability of a shopper purchasing Item B given that
Item A is included in the order.

• Lift A→ B, P (A∩B)/(P (A)∗P (B)), is confidence A→ B scaled by the support of B. 5 This is designed
to find interactions including lower-probability items missed by the confidence rating.

We generated support scores for all products, along with confidence and lift scores for all pairs of items
appearing in the same cart at least once, partitioned into user clustered and non-clustered data sets (clus-
tering described in more detail below). Parameter tuning included setting a minimum number of orders in
order for a product to appear in a recommendation, using different scaling factors (taking P (B) to powers
between 0 and 1), and testing whether user clustering improved recommendations.6

5.2. Logistic Regression and Linear SVM Classifier
As previously mentioned, another way to think of this problem is as a binary classification task, with models
that classify possible recommendations into ’good’ (1) or ’bad’ (0) recommendations. The top ten candidates
are the recommendations with the highest confidence of a 1 label.

The first methods to make use of this process used Sci-Kit learn’s LogisticRegression and SGDClassifier
with hinge loss. Both of these algorithms tune parameters θ to minimize a certain loss function defined over
our training set T :

J(θ) =
∑
p,u,o

Loss-{hinge, logistic}(x(p,u,o), y(p,u,o)) (3)

The parameters are then used to predict y labels for future examples. Because our training data T contained
far more 0 labels than 1 labels (a ratio of about 1000 to 1), we used the class_weight argument option
to weight up positive training examples about 1000 times more than negative ones. To gauge confidence for
1 labels, we use predict_proba in logistic regression to get a soft-label value between 0 and 1. For the
linear SVM, we use the signed distance to the separating hyperplane as our metric. In order to train on very
large training sets (several million examples), we operated on batches of examples small enough to load into
memory, making multiple calls to the partial_fit function.7

5.3. Weighted Linear SVM
We attempted a version of weighted classification by minimizing the loss with respect to query-specific weights
governed by cart similarity:

∑
p,u,o

w(o)Loss-hinge(x(p,u,o), y(p,u,o))
∣∣∣∣ w(o) = exp

(
−(x(i).cart− x.cart)2

2τ2

)
(4)

5In our case this could more accurately be described as f(P [B]) - due to extreme sparsity in the data, we scaled up P (B) toward 1
to avoid numerically and statistically problematic denominators.

6Our results table uses the best parameters from this dev process: 0 floor, 0.1 scaling, clustering for confidence but not for lift.
7partial_fit is not available for LogisticRegression, so our training set sizes in that case were restricted to about 500,000.
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This method gives more importance to training examples that have carts similar to the cart of interest,
where the cart distance is defined to be the euclidean distance between the cart embedding representations.

5.4. Neural Network
Finally, we used Sci-Kit’s MLPClassifier neural network. A neural network operates similarly to the previous
approaches, tuning parameters for future predictions by minimizing a global loss over T , but its architecture
involves many more computational steps at intermediary nodes, or neurons. In practice, we found a ReLU
activation to work better than a logistic activation, so we only include results for the former.

6. Experiments and Discussion
6.1. Testing and Evaluation Metrics

We posit the following recommendation scheme, modeled off a realistic shopping process: When a user
begins shopping, we offer 10 recommendations randomly selected from the 500 most popular items. After
items are added to the user’s cart, we offer recommendations of the same size based on predictions from
different models. We used two different validation metrics:

• Exact match: Count a recommendation as a success if the next item appears in the recommendation
set. This is a strict standard where ”banana” is different from ”organic banana.”

• Approximate match: Count a recommendation as a success if the cosine similarity between the product
embedding of the actual next item and that of any of the 10 recommended items is 0.88 or higher
(normalized to a 0-1 range). For example:

– Similar Products (counted as a success): ’spinach’ and ’baby spinach’ (0.93), ’organic apple’ and
’apple’ (0.91), ’onions’ and ’bag of onions’ (0.90), ’strawberry’ and ’strawberries’ (0.90)

– Dissimilar Products: ’beer’ and ’wine’ (0.81), ’spinach’ and ’kale’ (0.79), ’cupcake’ and ’cereal’ (0.69)

Because our recommendation system relies on a classification problem with highly uneven class labels,
we also used Receiver Operating Characteristic (ROC) curves measuring the ratio between false positives
and true positives to evaluate some of our best-performing models. The area under the curve (AUC) of the
ROC curve has been claimed to be a good summary statistic for machine learning algorithms[2], with an
AUC of 0.5 roughly meaning that the classifier picks at random, while a value of 1 means the classifier is
always correct.

6.2. Results and Discussion

TABLE I
TRAIN AND TEST RECOMMENDATION PRECISIONS AND ROC AUC’S

Model (Training/ Exact Exact Approx. Approx. ROC AUC ROC AUC
Test Set Size) (Train) (Test) (Train) (Test) (Unweighted) (w/ Class Weights)

Support (500k, 1k) 0.9% 1.0% 10.1% 10.2% - -

Confidence (500k, 1k) 9.6% 9.3% 21.9% 21.1% - -

Lift (500k, 1k) 9.9% 9.4% 22.4% 21.6% - -

Logistic (500k, 1k) 16.8% 10.3% 36.1% 26.0% 0.64 0.65

Weighted SVM (1000k, 100) - 1.9% - 28.2% - -

SVM (5000k, 1k) 8.0% 6.5% 27.8% 28.4% 0.53 0.65

Neural Net /
ReLU (5000k, 1k) 12.8% 12.2% 30.4% 30.2% 0.68 -

Our baseline metrics resulted in success rates of about 9% and 21% in exact and approximate matches,
respectively. (By contrast, offering a random selection of 10 popular items had only a 1% success rate in
exact matches.) Clustering helped our confidence ratings, bringing them up to the point where they nearly
matched the richer lift recommendations, but it seemed to introduce too much variance in the data to help
improve lift recommendations.
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TABLE II
SAMPLE RECOMMENDATION (FROM NEURAL NET)

Items Recommendations

In cart: Banana, Strawberries
Organic Cucumber, Lemon Hummus

Dark Chocolate, Guacamole
Feta Cheese Crumbles, Hass Avocado

Coconut Fruit Bars, Organic Banana
Organic Spring Mix, Organic Strawberries
Peach Pear Yogurt Broccoli Crown

Baby Arugula
Actual next purchase: Hass Avocados
Organic Strawberries Original Hummus

Our other models tended to improve on these results,
resulting in between 10-12% success rates in exact match
and 26-30% in approximate match. The neural net was the
clear winner in both metrics.

An example recommendation from the neural network
demonstrates some of the typical positive and negative at-
tributes of our model. On the positive side, the recommen-
dation set found the right answer (twice, in the approximate
case) out of 50,000 possible next items, and put together a
sensible and plausible set of recommendations.

That said, our models sometimes seemed to learn primarily
the frequency of items in the training data. Indeed, ’Organic
Banana’ was in most recommendations given by the neural
net, regardless of input features. It is likely that our problem
is not related to overfitting, since we used regularization and
train/test errors were quite close in most of our experiments (see Table I & Fig. 1). A more plausible
explanation is that the quality of our underlying classifier directly influences the quality of the predictions
of our recommender. While the 0.68 AUC value for our neural network model is well above the 0.50 level, it
is still not in the desirable 0.8-1.0 range. We speculate that a model with higher AUC would have improved
recommendation performance.

Fig. 1. Neural Network Learning Curve:
Green shows approximate accuracy on
the train set and red shows the same
quantity on the dev set

SVMs performed relatively well on the approximate metric
(28% success), but hopes that a weighted SVM would solve
the problem of only recommending popular items did not pan
out. This may have been because neural nets automatically
learn feature interactions, whereas the class imbalance and
large feature vector dimension of the training data may not
have been amenable to SVMs. The need to use smaller
training sets due to high computational complexity (since
a new classifier needs to be trained from scratch for each
possible recommendation set) may also have had a negative
impact. We suspect the computational requirements may be
infeasible for most applications in this area.

Lastly, using class weightings improved the linear SVM
model (moving AUC from .53 to .65), but had almost no effect
on the logistic regression classifier.

7. Conclusions and Next Steps
In this report we have presented a form of grocery cart
recommendation based on a binary classification problem.
We discussed our methods, including our feature extraction
work, and how we evaluated both our recommendation system and our underlying classification problem in
the face of uneven class labels with ROC AUC scores. The best of our models seemed to learn mostly the
frequency of the products in the data, although this model also had the highest AUC value.

Our future work would consist first of evaluating whether our training data indeed captures the information
needed for an effective recommendation system; it could be that generating approximate training data where
yp,u,o ∈ [0, 1] works better, for example. In addition, feature reduction techniques like PCA and LDA should
be implemented. We would then try to obtain more information about the link between AUC scores and
recommender performance. Given a strong link, we could attempt various methods to drive up AUC, starting
with feature reduction and kernels. Given a weak link, or if it became too difficult to improve the AUC metric,
we could attempt different recommendation schemes altogether, such as graph-based methods or hidden
Markov models. Lastly, we could try to frame the problem as a time series question and try a Long Short
Term Memory model, for example.
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8. Contributions
• Poorvi Bhargava: Data exploration, user clustering, product embeddings and similarity, feature extraction,

logistic regression, SVM, neural network, embeddings-based error analysis
• Alan Flores-Lopez: Data exploration, nutrition scoring fuzzy join, generating training set for ML methods,

setting up experiment infrastructure, logistic regression, SVM, weighted linear SVM, neural network, ROC
AUC scores and analysis

• Skip Perry: Data exploration, generating training set for market basket analysis, market basket analysis,
association rules, user cluster testing, error analysis
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