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INTRODUCTION

Today, Newton’s Method is commonly used in machine
learning and optimization to locate local minima of cost
functions. Because it is such a general tool, the cost func-
tions that is implemented on can range widely in terms
of both their dimensionality and their complexity. How-
ever, little is understood about how Newton’s Method
performs on cost functions with different dimensionali-
ties and complexities. In the simplest case, where the
cost function is a paraboloid, one can show that Newton’s
Method converges in a single iteration to the minimum.
We can increase the complexity of our cost functions by
considering perturbative deviations from the paraboloid
cost function. Intuitively, one should expect that as we
increase the cost function complexity, the convergence
rate will decline. However, as of now, there is no sim-
ple way to parametrize the complexity of a cost function,
and thus, little is known about the way that cost function
complexity affects the convergence of Newton’s Method.

In this paper, I introduce a method of generating per-
turbed cost functions which allow us to systematically
deviate from the simple paraboloid case. These per-
turbed cost functions are parametrized by a parameter
N , which describes the number density of gaussian per-
tubation sites and is thus related to the complexity of the
generated cost functions. By empirically fitting a model
to convergence rate data, I find that the convergence rate
depends strongly on both N and D (the dimensional-
ity of the cost function). This dependence on N and D
leads me to the hypothesis that the convergence rate of
Newton’s Method depends directly on the mean spacing
between pertubations.

I. GENERATING COMPLEX COST FUNCTIONS

I generate a family of cost functions where the com-
plexity and dimensionality can be systematically varied.
I do this by multiplying a D-dimensional parabola by a
randomly generated pertubation function. The unper-
turbed cost function is thus the D-dimensional parabola.
For x ∈ Rd, Jo(x) is given by

Jo(x) = ||x||2. (1)

This cost function has a single global minimum at x = 0
with Jo(x) ≥ 0.

I define my pertubation functions PN (x), where N is
the number of pertubations, as follows

PN (x) = 1 +A

N∑
i=1

(−1)i exp((x− µi)
2/2σ2) (2)

The pertubation is the sum of N gaussians with equal
magnitude A and variances σ2. The centers of the gaus-
sians µi are randomly sampled from a uniform distribu-
tion over the ball of unit radius in Rd centered about the
origin. The inclusion of 1 in the sum ensures that when
N = 0, P0(x) = 1 and hence P0(x)× Jo(x) = Jo(x).

I wanted to ensure that the value of x which mini-
mizes the perturbed cost function remained 0. To en-
sure this, I restricted the amplitudes |A| < 1 and defined
P̃N (x) = min(1 + A,max(1 − A,PN (x))). This ensures
that J̃N (x) ≥ (1− |A|)Jo(x). Since (1− |A|) is positive,
we can be sure that J̃N (x) is minimized by x = 0 with
a minimum value of 0.

Fig. 1 An example of a pertubation function and perturbed
cost function in 2 dimensions for N = 8.
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II. MEASURING CONVERGENCE

In each iteration of Newton’s method, the position of x is up-
dated to x(t+1) := x(t) −H−1∇J(x) where H is the hessian ma-
trix. With each iteration t of Newton’s method, the value J(x(t))
is reduced from its value during the previous iteration. We assume
that the cost as a function of iteration exponentially decays, i.e.
J(x(t)) ∝ e−γt. With this assumption, and under the condition
that the minimum cost is zero, the convergence rate γ is defined
as:

γ = log
J(x(t−1))

J(x(t))
(3)

Our assumption that the cost exponentially decays with it-
eration number matches well with measured convergence, as
seen in the example plot below. In practice, I measure the
convergence rate γ by comparing the cost after one iteration
with the initial cost. This allows for faster calculations be-
cause newton’s method only needs to be iterated a single time.

Fig. 2 An example of a Newton’s Method convergence for d = 2
and N = 4. Until the limit of computer accuracy is reached, the
cost vs. iteration number is well modeled by exponential decay
with a convergence rate γ ≈ 6.7 (in black)

III. METHODS AND RESULTS

To measure the effect of dimensionality and complexity on the
convergence of Newton’s Method, I measured the convergence rate
γ as defined in section II for a variety of cost functions. At each
dimensionality d ∈ [1, . . . 5] and each cost function pertubation
number density N ∈ [0, . . . 8], I average γ measured for 200 cost
functions with x(0) = 1.

Fig. 3 Convergence rate γ for cost functions in R1 – R5 plotted
against N . The upturn in the R1 is likely due to the onset of
non-convexity.

As is seen in figure 3, the convergence rate at each dimensionality
seems to exponentially decay with N , the cost function pertubation
number density. The rate of this decay with dimensionality Γ(D)
is dependent on the dimensionality. We can empirically fit this
behavior as:

γ(D,N) ≈ γo(D)e−Γ(D)N (4)

From this expression, we can define Γ(D) as:

Γ(D) = log
γ(D,N)

γ(D,N + 1)
(5)

Γ(D) can be understood as the rate at which the pertubation
number density affects the convergence rate of Newton’s Method in
D dimensions.

I plot Γ(D) for D ∈ [1, . . . 12]. Values of Γ(D) are calculated by
comparing γ(D,N) and γ(D,N + 1) as described by equation (5)
for N ∈ [1, . . . 5], averaged over 1500 trials.

Fig. 4 Γ(D) is plotted both on linear and logarithmic axis
against a curve of best fit Γ(D) ≈ 1.4× (2.3)−D

As discussed in the caption to figure 4, an empirical best fit
for Γ(D) is Γ(D) ≈ 1.4 × (2.3)−D. This exponential fit performs
extremely well. The exponential behavior is interpreted in the
next section.

IV. INTERPRETATION OF RESULTS

In section III, I show that the convergence rate γ as a function of
dimensionality D and number of pertubations N can be modeled
as:

γ(D,N) ∝ exp
(
− 1.4× (2.3)−D ×N

)
(6)

This expression, although it produces a very good fit to the ex-
perimental data (see figure 4), seems rather ad hoc, particularly in
the absence of any theory that would justify such an expression.
However, as I argue below, the unusual structure of the expression
is likely due to the fact that we have chosen the wrong way to clas-
sify the complexity of the cost function surface. During this study,
I have implicity assumed that N , the number density of pertuba-
tions, is the correct way to classify the cost function complexity.
However, as I will argue below, expression (6) suggests that we
should classify the cost function complexity in terms of the inverse
of the average spacing between pertubations n ∝ N1/D.

Using expression (6), let us try to answer the following question:
what density of pertubations N is required to reduce the conver-
gence rate by a factor of f in D dimensions? We find that:

Nf (D) = −
ln f

1.4
× 2.3D (7)

Thus, an exponentially higher density of pertubations is required
to reduce the convergence rate by the same factor in, for example,
5 dimensions compared to 2 dimensions. However, we note that
nf (D) ≡ Nf (D)1/D is close to constant (based on our empirical
model) for convergence rate reduction factor f .

It is interesting that n ≡ N1/D determines the convergence rate
reduction factor. Since N is linearly proportional the pertubation
density (the number of pertubations in a unit volume), n ≡ N1/D

is related the inverse of the average distance between pertubations
by dimensional analysis. Based on this fact, it is likely that the
convergence rate of Newton’s Method is related more directly to the
average distance between pertubations than to the number density
of pertubations.
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CONCLUSION

In conclusion, I found that we can generate arbitrary cost func-
tions in RD which, in addition to be parametrized by the dimen-
sionality D, are also parametrized by the number density of gaus-
sian pertubations N . I analyzed the convergence rate of Newton’s
Method as a function of both N and D and found an empirical
model to fit the measured convergence rates:

γ(D,N) ≈ γo(D)eΓ(D)N (8)

Γ(D) was found to exponentially decrease as a function of D.
This behavior suggests that a more natural way of parametrizing
the complexity of the generated cost functions is through the mean
distance between pertubations. Further work will be required to
establish if the convergence rate varies in a more natural way on
the average spacing between pertubations. As it stands, this paper
establishes that there is a strong connection between dimensional-
ity, cost function complexity, and the convergence rate of Newton’s
Method.

One potential application of these results is the following diag-
nostic tool for measuring the complexity of a given cost function.
In the real world, cost functions do not appear in the form that
I generate them in this paper. However, expression (8) can be
inverted to give the number density of pertubations N :

N =
ln

γo(D)
γmeas

Γ(D)
(9)

Thus, N , which is a good way of classifying the complexity of
the cost function, can be deduced from the measured convergence
rate. Experimentalists, engineers, and data scientists can calculate
γmeas by iterating Newton’s Method a single time from a variety of
starting points. A similar systematic analysis of other optimization
techniques (such as Gradient Descent), with cost functions gener-
ated in the same way as in this paper, can give information about
which techniques are most appropriate as a function of the cost
function dimensionality and complexity parameter N . Thus, by
measuring N with Newton’s Method, engineers can select the most
appropriate optimization technique for their given problem.

RELATED WORKS

As far as I can tell, the methods that I followed in this paper
are fairly novel. I could not find any papers which asked simi-
lar questions about how dimensionality and complexity affect the
convergence rate of Newton’s Method. As a result, there were no
papers which directly influenced my paper. Instead, I list a few
very general papers and books that are related to optimization and
Newton’s Method.
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