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Abstract
In order to confidently rely on machines to decide and per-
form tasks for us, there needs to be classifiers with reliably
high accuracy. One of the challenges for having an accu-
rate classifier is that the scarcity, quality, or richness of the
training data can limit the Bayes upper bound of the accu-
racy. The second challenge is that having high accuracy
could require complex and slow classifiers while fast and
simple classifiers suffer from low accuracy. In this work,
we have investigated abstention as a solution to both of
the mentioned challenges. Abstention allows us to find
how difficult if the task at hand for the classifier. Abstain-
ing from a difficult task would result in higher accuracy.
Abstaining from extra computation for an easy task would
save computational time.

1 Introduction
Recent advances in machine learning has set new per-
formance standards. However, in some applications the
knowledge deficit and confounding factors in the avail-
able training data put limits on prediction certainty of
machine learning systems; applications like disease pre-
diction [14] or protein-DNA binding prediction [7].
For instance,data available based on Electronic Health
Record(EHR) for predicting patients health condition is
often reported partially and complementary information
is not obtainable.

Even in the presence of reliable training data, the state-
of-the-art model might not be computationally feasible to
implement [16]; consequently, there’s a need to imple-
ment smaller models with lower accuracy.

∗Equal contribution In experiments and write-Up.

One solution for the problem of accuracy control for
machine learning models is to abstain the from predic-
tion where there is uncertainty. For the problem of speed,
propose a method of constructing a classifier, which accu-
racy can be adjusted, i. e. based on the computational re-
sources available, it can have different accuracy. The idea
is simple: most samples are easy to classify and therefore
do not need the full computational effort of the classifier
to be classified.

In what follows, we first describe existing abstention
methods. Then we examine several models behavior in
the presense of abstention. At last we propse an algorithm
to increase the speed of inference in deep neural networks
using abstention.

2 Related Work

The idea of classifiers with rejection option was first in-
troduced by [2] in 1970. There has been several papers
in the area of accelerating the netural network classifiers.
Denil [4] demonstrated large redundancy in neural net-
works. Exploiting this feature, there has emerged a new
line of research to train high speed compressed networks.
Ba & Caruana [1] compressed deep networks into single
layer networks. Lebedev [11], Jagerberg [9] used matrix
decomposition techniques to speed up CNNs. The com-
mon issue with the mentioned works is, despite reduced
size and increased speed, they still propose a fixed size
model for all input samples.
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3 Methods

3.1 Problem Statement
Given:

• A trained Classifier F : Rd → RC with C classes

• sample xt from test distribution with true label yt

• abstention/shortcut function D : RC → {0, 1}
(Abstain from prediction/Shortcut prediction if
D(F (xt)))

• Desired accuracy A0

• Test sample inference time: t(xt;F )

The Accuracy Control Problem is defined as:

argmin
D

E[D(F (xt))]

subject to : Pr[F ((xt))] > A0givenD(F (xt)) = 1

which means that we want to have the minimum absten-
tion(rejection) rate for having the desired accuracy. The
Speed Control Problem is defined as:

argmin
D

E[t(xt;F )]

subject to : Pr[F ((xt))] > A0

which means that we want to have the minimum compu-
tation time for having the desired accuracy.

3.2 Abstention Methods
In the most recent state of the art architectures ( [10], [8])
there exists a softmax layer as the last layer of the clas-
sifier. Consequently, the classifier’s output would be a
probability vector P over class labels. Even for simple
classifiers like SVM or random forest, the scores can be
converted to probability distribution between classes. [13]

• Confidence Abstention: The most simple absten-
tion method would be to reject any sample which
winning class confidence score is less than a thresh-
old. In [5], however, was shown that for optimal
rejection-accuraacy trade-off there needs to be dif-
ferent thresholds for different classes. For classifi-
cation tasks with few number classes this could be

tractable, however, in tasks like Imagenet [3], it is
not efficient to search for 1000 thresholds, one for
each class.

• Entropy Abstention: As mentioned, drawback of
the confidence abstention was the need for class-
specific threshold. Therefore, as a better abstention
criterion, we use entropy of the output probability
vector:

H(P) =

C∑
i=1

Pilog(Pi)

Entropy as an uncertainty measure takes into account
the confidence scores of all of the classes unlike the
confidence abstention where only the winning class
confidence is considered. In other words, for or two
probability vectors with equal winning class confi-
dence score, the entropy would not be the same; e.g.

H([0.01, 0.47, 0.52]) 6= H([0.24, 0.24, 0.52])

• Dropout Abstention Gal Ghahramani [6], intro-
duced a novel method for uncertainty approxima-
tion in neural networks where the prediction task
is performed several times while having dropout in
all layers of the neural network. The result would
be several probability vectors for the same test sam-
ple. Using the mean and variance of predictions, one
can estimate the prediction uncertainty and therefore
the confidence bounds of the prediction score. The
drawback, however, is that this method requires sev-
eral times more computational power. Performing
the classification task on each sample M times while
having dropout after each layer will result in having
M confidence vectors P1, . . . ,PM . There are sev-
eral ways of using there probability vectors for ab-
stention:

– We can take the mean of the vectors and then
abstain just as the confidence method or the en-
tropy method. The drawback, however, is that
the information about variation of scores is not
utilized,

– We can add the variance of each class’s score
to its average and get an Upper Confidence
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Bound(UCB) of the prediction confidence. We
can also have a lower confidence bound(LCB)
by subtracting the variance from mean,

– Taking into account that variance of the predic-
tion stands for uncertainty, we can reject sam-
ples that have high uncertainty.

3.3 Shortcut Method
Recent state-of-the-art classifiers consist of large number
of layers. It has been shown( [15]) that neural networks
extract features layer by layer. Therefore, we expect the
separability of data between different classes to increase
as we go deeper into the network.

Different test samples have various levels of difficulty
to be classified. It is expected for easier samples to be
classified correctly without the need of profound feature
extraction of a deep network. In other words, using the
features extracted in the very first layers would be enough
for classifying part of the test distribution. Figure 1 dis-
plays the two dimensional projection of MNIST data set
using t-SNE [12]. It’s clear that for most part of the data
set even a simple linear classifier would be able to sepa-
rate different classes.

Figure 1: MNIST t-SNE

As a consequence, we can shortcut the prediction of the
network for easy samples. The question that arises would
be to measure how easy a sample is. In this work, our
answer is to use abstention.

For each test sample, after computing the operations of

first layer (simplest level of feature extraction), the first
shortcut (a small fully-connected network) performs the
classification task. If the classification result more confi-
dent than a certain threshold, the sample is classified. If
not, the sample goes through the next layer and so on. Fig-
ure 3 gives a better understandnig of what we described.

First question would be that the each shortcut layer it-
self adds to the computational effort. First of all, the
number of operations in a shortcut network compared to
the original network’s number computational operations
is negligible in most state-of-the art classifiers. Secondly,
in practice, shortcuts are used only in between every few
number of layers instead of every layer.

Second question, is the measure to detect whether a
sample is confidently classifier at each shortcut. In this
work, we used Entropy. At each shortcut, if the entropy
of the output probability vector over classes P is smaller
than a threshold, the sample is not abstained from the
shortcut and therefore the classification is finished with-
out computing next layers.

Last question to be answered, is how to find the entropy
thresholds at different shortcuts. It should be mentioned
that the thresholds are not independent. If we increase
the threshold of the first shortcut, more samples would
be classified at first layer which means that more difficult
samples would reach to the second shortcut and therefore
its threshold should be adapted. Because of these depen-
dencies, in this project, we used grid search to find the best
thresholds. Figure 2 describes the result of grid search for
a 5 layer CNN trained on CIFAR10 with original accuracy
of 82%. Algorithm 1 describes the specifics. (Figure 3).

Figure 2: Short-circuiting a 5-layer CNN classifier
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Figure 3: Speed Control: Adding short-circuit networks in the
middle of deep neural network classifiers

4 Experiments

Table 1 describes data sets.

4.1 Accuracy Control in Support Vector
Classifiers and Random Forest

As a baseline example, we use confidence abstention for
Support Vector Classifier because of their power in high
dimensional space and Random Forest for as a widely-
used baseline in mid-sized and small data sets. For SVMs
we have the choice of using kernels to have efficient com-
putations. As displayed in Figure 4, even for these simple
classifiers, any desirable accuracy is achievable with the
if enough portion of test samples rejected.

4.2 Acccuracy Control in Neural Networks

We examined several abstention methods. Entropy ab-
stention was discussed above. There are several ways to
implement dropout abstention.

Examining different values for the number of test time
forward passes of the dropout abstention method(M ), we
realize that performance increases from M = 1 to M =
20 and remains the same for larger M values. Examining
different dropout probabilities, we find that pdrop-out =

0.5 results in the best rejection-accuracy trade-off. Final
results are depicted in Figure 4.

As the results imply, using LCB, UCB or Mean yields
to slightly better results compared to entropy abstention
while having 20 times more computational cost. (Using

just the uncertainty of prediction yields to the worst re-
sult.)

(a) (b)

(c) (d)

Figure 4: Accuracy-Rejection Trade-off : (a) The accuracy-
rejection rade-off for the two data sets trained on linear and RBF
SVMs using confidence abstention. (b) The accuracy-rejection
rade-off for the three data sets trained on random forest tuned
using 5-fold cross validation. (c) Result for several abstention
methods for a feed-forward neural network classifier trained on
CIFAR 10 data sets. (d) Result for several abstention methods
for a feed-forward neural network classifier trained on Fashion
MNIST data set.

4.3 Speed Control

In Figure 6, the speed control (best trade-off between ac-
curacy and number of computational operations) by using
shortcuts in a VGG16 architecture [16] (Figure 5) trained
on CIFAR10 data set with 88% original accuracy is dis-
played. We used 5 shortcuts with 1024 hidden neurons
each. As depicted in the plot, with half of the original
number of operations, we can achieve 95% of the original
accuracy. In other words the classification becomes twice
faster while accuracy drops from 88% to 84%.
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Data Set Number of Attributes Number of Instances Number of Classes Setting
Cardiotocography(CTG) 23 2126 10 One Vs Rest Linear SVM, Random Forest

Thyroid Disease 21 7200 3 One Vs Rest RBF Kernel SVM, Random Forest
Fashion MNIST 784 50000 10 Two hidden layer Neural Network

HIV 160 7000 2 Random Forest
CIFAR10 3072 50000 10 Three hidden layer neural network

Table 1: Data Sets: The details of the data sets we used in our experiments

Figure 5: VGG16 structure

5 Conclusion & Future Work
We examined the abstention protocol for accuracy and
speed control. We showed that abstention can be used
in wide range of classifiers in the sense that by rejecting
difficult test samples, the accuracy for the remaining test
samples can increase arbitrarily. Accuracy control is nec-
essary for applications such as disease prediction where
avoiding from mistake is more important than being able
to predict disease for every patient.

We, then, proposed an algorithm that using abstention
tries to avoid from over-classification of easy samples. It
was shown that using the proposed algorithm, one could
exploit a trade-off between speed and accuracy of a clas-
sifier. The importance of this algorithm is that in settings
where the local computational power is limited (e.g. mo-
bile phone), most of the task could be handled locally and
in the case of a difficult task, the built-in classifier could
query a more complex in-sever classifier.

So far, all the abstention methods we discussed are test-
time abstention methods that are applied on an already
trained classifier(Dynamic Abstention). One other line of
research would be to examine incorporating abstention as
a criterion in the the training phase of a classifier. (Static
Abstention) on protocol for utilization of abstention. We
a better algorithm for finding entropy thresholds in the
proposed speed control algorithm as the current method
is not scalable.

Figure 6: Speed control for VGG16 architecture trained on
CIFAR10. The curve depicts the smallest number of operations
compared to the original network’s number of operations for a
any given accuracy.

Appendix: Speed Control Algorithm

input sample x ∈ RD, A N layer network with
layers: L1, L2, . . . , LN , an entropy threshold For
each layer’s shortcut : T1, T2, . . . , TN ;

i = 1;
while classification not finished do

Activations of the i’th layer are calculated and are
passed through a shortcut fully connected
network to get probability vector Pi();

if H(Pi) < Ti or i = N then
Classification done;
C(x) = argmaxj=1,...,C Pij ;

else
i = i+ 1

end
end
Algorithm 1: Adding shortcuts to deep networks
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