
Supervised learning methods for biometric
authentication on mobile devices

Valerie Ding
Dept. of Computer Science

Stanford University
dingv@stanford.edu

Stephanie Dong
Dept. of Computer Science

Stanford University
sxdong11@stanford.edu

Jonathan Li
Dept. of Computer Science

Stanford University
johnnyli@stanford.edu

Abstract

We develop fraud detection and user authentication classifiers for mobile keystroke
and haptic patterns, achieving 84% accuracy, 90% recall, and 81% precision within
one model architecture, and 99% recall and 83% precision across all models. In
addition to proposing these models that outperform existing touch dynamics au-
thentication models, we present a secure, space-efficient, and extensible framework
for real-time biometric backlogging comparison.

1 Introduction

Keystroke pattern and dynamics classification is an important application of machine learning to
computer security and authentication. Much of the existing literature focuses on traditional computer
keyboard dynamics analysis, but the massive increase in popularity and computing power of mobile
devices in the last ten years has spurred significant interest in biometric-focused authentication models
for mobile devices.

Existing literature emphasizes the need for more nuanced security protocols in personal devices. As
mobile devices store increasingly valuable and confidential information, learning classifiers to detect
fraud is becoming ever more applicable and important. At the same time, a general, space-efficient,
and real-time framework is required to be viable in practice. To this end, we develop fraud detection
algorithms that use real-time keystroke dynamics data, and propose a space-efficient comparison
framework that can be integrated into native software across all mobile devices.

The 2016 Teh et al. survey of touch dynamics authentication on mobile devices shows that probabilis-
tic modeling, cluster analysis, decision trees, SVMs, and neural nets are the top most widely used
in the decision making process [8]. Sen et al. (2014) and Jeanjaitrong et al. (2013) used multilayer
perceptron, achieving around 80% accuracy on the user verification task for mobile touch dynamics
data. However, much of the error was in false rejection and both used datasets of either few subjects
or short password sequences [10,11], indicating a need for research in discriminatory classifiers and
on larger datasets.

2 Data and Methods

2.1 Dataset and features

We use the MEU-Mobile KSD (Keystroke Dynamics) Data Set from the UCI Machine Learning
Repository [1], containing 51 records for each of 56 subjects - 2856 records total - of haptic,
momentum, and timing features measured of a common sequence, ’.tie5Roanl’, typed on a Nexus 7
mobile device. There are 71 features monitored, including Hold, Up-Down, Down-Down, Pressure,
Finger-Area, Averages of Hold, Pressure and Finger Area.



Hold . Hold t Hold i Hold e Hold Shift Hold 5 Hold Shift
89 92 64 85 123 82 70
90 88 99 83 123 101 81
87 90 83 65 79 73 96
71 81 62 72 83 94 89

Table 1. First five features from first four user typing sequences.

2.2 Interpretation framework

We propose the following comparison framework:

• Initialize user keystroke dynamics profile upon mobile device setup. Store a "typical" user
keystroke sequence.

• For each subsequent input keystroke sequence, compare the stored keystroke dynamics
profile to the input sequence via a learned classifier to predict if the keystroke dynamics
were generated by the original user.

This comparison framework relies on a classifier to detect if two keystroke sequences are from the
same user. Such setup allows for reuse of the same classifier to perform user verification on any
number of users, by replacing the stored keystroke profile.

In addition, the framework is secure and space-efficient since it stores a minimal amount of original
user data, which is already anonymized and can be obfuscated to provide additional security.

2.3 Data preprocessing

To prepare data for training our comparison models, we concatenate each keystroke sequence record
with every other record to form a new concatenated comparison vector where the binary label is
whether or not the records comes from the same user. This generates on the order of 8 million data
points to then feed into our learning algorithms.

We implemented a resampling framework that can utilize a variety of undersampling and oversampling
methods to undersample the majority class and oversample the minority class. Resampling ensures
parity between labels of different user and same user in the training data. Our resampling framework
allows for:

• Oversampling the minority class:
– Synthetic Minority Oversampling Technique (SMOTE): Generates synthetic data points

based on clustering on feature data and assuming continuous features
– Adaptive Synthetic Sampling Approach (ASAYN): Weighted generation of synthetic

data points that prioritizes harder-to-learn examples in the minority class
• Undersampling the majority class:

– Random Undersampling (RUS): Randomly picks examples from the majority class.
Our implementation does so without replacement.

Before training and testing, the data was randomly shuffled and divided 90%-5%-5% into training,
validation, and test sets. Additionally, we opted to undersample the majority class to balance the
classes in this research.

2.4 Models

We trained logistic models and deep neural network models of varying number of layers, hidden
units, and activation functions. The N-layer neural networks we employed had 1 to 10 hidden layers,
10 neurons per hidden layer (ReLU activation), and sigmoid output layer activation (Figure 1). We
also experimented with a triangular NN architecture (half the number of units at each successive
hidden layer).
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Figure 1: N-layer DNN architecture.

3 Results and Discussion

3.1 Baseline

The baseline compares the first half X1 of the concatenated vector X1,2 with the second half, X2. For
each test example, if X1 = X2, we label y1,2 = 1 (same user), and y1,2 = 0 otherwise. This achieves
α ≈ 0% false positive rate, since the only time it predicts y1,2 = 1 is when the feature sequences are
exactly the same, and thus nearly guaranteed, and in this dataset guaranteed, to be from the same user.
However, the false negative rate is β = n−1

n where n is the number of records per user. With this
dataset, this means β = 50

51 ≈ 98%. Thus, the baseline achieves 100% sensitivity but 2% specificity.

3.2 Logistic regression with cross entropy loss and no resampling

We trained a logistic regression model optimized using cross entropy loss. For this preliminary stage,
we pulled from a subset of the dataset. We generated concatenated vectors for the first 10 examples
each of the first 10 users and performed our data preprocessing method on the data subset with no
under- or over-sampling. With 70%-30% train-validation split, we achieved 89.6% accuracy with 0%
precision, 0% recall, and 100% specificity. Upon inspection, the model consistently predicted the 0
label for every single validation example. We hypothesized that the disproportionate prediction of
label 0 was due to heavily unbalanced data, with a significant majority class 0.

3.3 Logistic regression with cross entropy loss and 50-50 undersampling

In our next attempt, we used resampling techniques to balance the majority and minority class to
parity. With 50-50 undersampling using random undersampling of the majority class, and using
post-processed training set of 260 thousand comparative examples, we achieved 58.12% accuracy,
78.18% precision, 23.88% recall, and 76.12% false negative rate. This model had a 76% likelihood of
predicting different user when the user was in fact the same. This is not more effective than a random
guess, so the challenge will be lowering the false positive rate, while increasing precision.

3.4 Fully Connected Deep Neural Nets with cross entropy loss and 50-50 undersampling

From the results in the section above, we hypothesized a single logistic unit could not represent
enough complexity to capture the relationship between the 142 features of our input. Hence, we
trained a variety of fully connect deep neural networks and compared their validation accuracy. Deep
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neural nets ranging from 1 hidden layer to 10 hidden layers, with 10 neurons per hidden layer, with
relu activation, and sigmoid activation on the output layer. The loss function remained cross-entropy.
We trained each DNN model for 20 epochs from randomly initialized weights and measured their
validation accuracy.

3.5 Triangle NN

To evaluate the effects of varying the number of neurons in the hidden layers, we trained and evaluated
a fully connected neural net model with half number of units at each successive hidden layer. This
model had 3 hidden layers, 100 neurons in the first hidden layer, 50 in the second one, and 25 in the
third one. All hidden units used ReLU activation, and the output neuron had a sigmoid activation.
We termed this model the "Triangle" model. We trained this model using cross entropy loss for 20
epochs.

3.6 Summary of results

We compare validation results on all models trained using the 50-50 undersampled data.

Model Loss Accuracy Recall Precision False Negative Rate
Logistic 6.661 58.12% 23.88% 78.18% 76.12%
DNN-1 0.690 69.10% 49.05% 83.31% 50.95%
DNN-2 7.905 50.41% 99.78% 49.76% 0.22%
DNN-3 0.536 73.73% 70.37% 76.04% 29.63%
DNN-4 0.695 49.73% 0.21% 59.89% 99.79%
DNN-5 0.531 73.45% 72.52% 74.30% 27.48%
DNN-6 0.409 81.70% 91.18% 77.40% 8.82%
DNN-7 0.484 76.88% 97.16% 69.15% 2.84%
DNN-8 0.527 72.93% 80.23% 70.79% 19.77%
DNN-9 0.425 80.29% 81.69% 80.19% 18.31%
DNN-10 0.450 79.78% 77.46% 81.37% 22.54%
Triangle 0.380 84.28% 89.76% 81.14% 10.24%

Table 2. Model results on validation set. False Negative Rate is calculated as 100% - Recall.

From this comparison, we observe that the model with highest accuracy was the Triangle model,
with an accuracy of 84.28%. Notably, this model also achieves a high recall of 89.76% and a high
precision of 81.14%. For these reasons, we consider the Triangle model best overall. Comparatively,
the 2 hidden layer DNN model achieved the highest recall, at 99.78%, and the lowest precision, at
49.76%. Similarly, the 1 hidden layer DNN model achieved the highest precision had a low recall, at
49.05%, as well.

Amongst fully connected NN models with five and fewer hidden layers, the Triangle model accuracy
with balanced recall and precision. In addition, as we increase the number of hidden layers beyond 5,
the accuracy did not necessary always increase and thus performance on this user verification task
was not strongly correlated to the depth of the neural net model. Note that accuracy lowered between
DNN-5 to DNN7.

4 Conclusions and future work

We developed and contrasted logistic regression and deep neural network classifiers for user verifica-
tion through biometric typing pattern data on mobile devices, achieving 84.28% accuracy, 89.76%
recall, and 81.14% precision within one model architecture, and 99.78% recall and 83.31% across all
models. This outperforms state-of-the-art touch dynamics techniques, specifically neural nets pro-
posed by Sen et al. (2014) and Jeanjaitrong et al. (2013). We also developed a secure, space-efficient,
and extensible framework for real-time biometric backlogging comparison.

Applications of these discriminatory classifiers are in enhancing device security by adding another
layer of verification. By writing this classifier onto mobile devices and training it on a user’s featurized
password input, we can ensure that even if a password’s content is typed in properly, it must be typed
in with the learned cadence of the original user in order to be verified. This will effectively proof
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every mobile device from brute force password attacks by adding an unknown number of additional
features the attacker must account for. Additionally, this has the ability to continually verify the
authenticity of the user based on their typing patterns as they use the mobile device, hardening against
device takeover by ensuring that only the primary user has access to the phone.

5 Future work

In this research, we resampled by downsampling the majority class. Our flexible resampling frame-
work allows for different resampling techniques, which can be explored in the future. Additionally,
we can perform data augmentation using adversarial examples or other upsampling techniques. This
would help inform next-generation development of discriminatory classifiers.

The 83.3% precision of our highest precision model and the 81.14% model of our best overall model
is insufficient as a replacement to currently user verification systems, including user ID and password,
fingerprint biometrics and face recognition. Future work on this topic would include devising a
classifier architecture that would reach acceptably high precision for user verification. Another
interesting extension of this research would be to develop a user state model. By modeling each user
as a multivariate Gaussian generated from user data and features, we can augment our training data
by sampling from user models.

6 Contributions

Valerie Ding worked on data processing, resampling framework, and differential privacy in the authen-
tication models. Stephanie Dong worked on implementing the classification models in Tensorflow
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