CS229 Final Project Report
Automatic Music Transcription for
Monophonic Piano Music
via Image Recognition

CueN CEN

ccen@stanford.edu

AN J1ANG

jlanga@stanford.edu

December 15, 2017

I. INTRODUCTION

usic transcription has been a long-
Mtime challenging task even for human.

It takes a significant amount of time
and effort for an experienced musician to lis-
ten to a song or music and transcribe it into
music sheets. Automatic Music Transcription
(AMT) automates the process of transcribing
musics and plays an important role in music
information retrieval(MIR). Even though the re-
search for AMT is still in infancy, the results so
far have been proved to be very educational to
both the areas of Machine Learning and Music
Composition. In this project, we tried to tackle
the problem of music transcription using a new
approach proposed by [1] that transforms the
music note detection problem into an image
recognition problem using Convolutional Neu-
ral Network (CNN). We gathered our training
and testing data from the MAPS database [2]
which contains recordings and MIDI files of iso-
lated piano notes and built upon the existing
CNN image recognition algorithm with Ten-
sorflow for the music transcription problem.

II. RELATED WORK

Some existing approaches for AMT include di-
rectly analyzing music notes by SVM [3] or
HMM [4]. They tried to seperate the transcrip-

tion problem into note and rhythem recgnition
problem. Our approach is to use train a CNN
model that is able to correctly label notes in the
track from the spectrogram of it. To solve an
image classification problem, Alex Krizhevsky
proposed a multi-layer CNN architecture con-
sisting of alternating convolutions and nonlin-
earities [5] which is already implemented in
Tensorflow [6]. It is able to achieve 11% error
with 75 minutes of training for the CIFAR-10 [7]
classification problem. Our model architecture
is developed on top of the structure used in
the article.

III. DATA AND PROCESSING

We first started with MIDI and text files which
contain the label, on and off time of each note
(ground truth) and the actual sound record-
ings in wav format (input data). The MIDI files
are processed with mido python library [8] to
obtain the length of the track. The text files
are transformed into note maps containing the
label information for each existing note. From
the note map, we constructed an array of in-
tegers that indicate the music note in MIDI
note numbers which is present in the current
time step. The wav files are processed with
librosa python library [9] which is capable of
audio analysis and music visualization. To
map the frequencies of the music track better,

mailto:ccen@stanford.edu
mailto:jianga@stanford.edu

we used constant-Q transform instead of Short-
Time Fourier Transform (STFT) to generate the
spectrogram. From the diagrams below, we
can see that constant-Q transform streches the
low frequency domain which makes the notes
more distinguishable and the difference in test
accuracy using these two methods confirms
our theory.

Figure 1: Example of STFT (left) and Constant-Q (right)
Spectrogram

For each time step, we generate a 32x32
thumbnail of the spectrogram of the track and
save it as a JPEG image. The images and the
array of note labels for each time step are com-
bined into a cPickle data package which will be
fed into the training model directly. The data
package will be a dictionary with train, valid
and test keys to indicate the usage of each data
set.

IV. METHODOLOGY

The preprocessed daset are fed into a Ima-
geNet classification CNN model introduced
in [10]. It is a multi-layer architecture consist-
ing of alternating convolutions and nonlineari-
ties. Specifically, it consists of two CNN layers
with two fully connected layer with ReLU acti-
vation function, followed by a 128-way softmax
output. The convolutional layer processses
data only for its receptive field and reduce the
number of parameters to learn. The following
pooling layer combines the outputs of neuron
clusters at one layer into a single neuron for
the next layer. The norm layer is a special nor-
malization layer introduced in the paper to aid
generalization and to reduce overfitting.

softmax_linear

Figure 2: Original CNN structure

The algorithm maximizes the multinomial lo-
gistic regression objective, which is equivalent
to maximizing the average across training cases
of the log-probability of the correct label under
the prediction distribution. Softmax regression
calculates the cross-entropy between the nor-
malized predictions and a 1-hot encoding of
the label abd applies a softmax nonlinearity to
the output of the network. For regularization,
the algorithm also applies the usual weight
decay losses for all learned variables. The ob-
jective function for the model is the sum of the
cross entropy loss and all these weight decay
terms. The model is trained using stochastic
gradient descent with a batch size of 128 exam-
ples, momentum of 0.9 and a weight decay of
0.0005. Instead of using sigmoid or tanh as the
activation function, this model used ReLU non-
linearity (f(x) = max(0,x)) as the activation
function for faster convergence.

Due to the large amount of parameters to
learn by this net, some data augmentation is
introduced to reduce overfitting. Specifically,
random images are selected to be distorted in
the following ways: reflecting the image hor-
izontally, randomizing the images brightness
and contrast, linearly scaling image to have
zero mean and unit norm. Finally, 32x32 im-
ages are resized to 24x24. With these data aug-
mentations, the average error decreased from
26% to 11% on the CIFAR-10 datasets.

RelLU H soﬁmax_linearJ

Figure 3: Simplified CNN structure

norm1

Initially we have conducted most of the ex-
periments with the original CNN structure, but
after few changes we are unable to raise the
performance further. Comparing the image
classification problem and note labeling prob-
lem, we decided to try to simplify the neu-
ral network since the spectrograms are more
straightforward and more distinctive on the dif-
ference between different notes. So we reduced
the CNN structure with only one set of con-
volutional, pooling, normalization and ReLU
layers and trained it with the same dataset. To

our suprise, the performance of the simplified
model does not suffer much loss compared to
the original model.

V. REesuLTs

We have conducted several experiments on the
image processing procedure, learning param-
eters and CNN structure to improve the per-
formance of the model. All the data below are
obtained by training the neural network with
the same dataset with more than 8000 images
after 5000 steps while the data are split for
training and testing with the ration of 4:1.

Model CE Total | Test
(L2) Loss Accuracy

Original CNN | 0.356 | 0.52 0.782

and parameters

STFT 0.581 | 0916 | 0.516

Learning rate | 0.228 | 1.23 0.76

fast decay

No image dis-| 0.192 | 0.356 | 0.773

tortion

Larger image | 0.14 0.23 0.823

size

Simple CNN 0.325 | 0.553 | 0.773

Simple CNN | 0.151 | 0.297 | 0.78

(10k steps)

Table 1: Performance results from experiments

We can see that the original network used
for image classification is not performing so
badly though still not as good as the accuracy
achieved by the original article (86%). Thus,
we have tested several methods with the hope
to improve the result: to make the cross en-
tropy converges faster, we tried to modify the
decay rate of the learning rate; to reduce the
noise of the input, we skipped the random
distortion of the images before feeding to the
model; to enhance the quality of the dataset,
we increased the resolution of the images. As
a result, improving the quality of the images
have increased the test accuracy the most, to
an extend of 82.3%, though the training time
cost is much heavier since the dataset size have

increased significantly.

From the results above we also noticed that
the simple version of CNN does not under-
perform much from the original CNN model,
especially after 10,000 steps of training. At
the same time, the L2 loss and total loss for
simple CNN converges to the same value and
with the similar speed as the original CNN. As
shown in the plots below, the simplified CNN
even performs better in terms of the stability
of the convergence for the total loss. Thus
we concluded that the simple CNN model can
achieve the same performance in music note
classification problem, with the benefit of less
time cost for training.

total_loss_raw_

Figure 4: Total loss vs. steps for original CNN (top) and
simplified CNN (bottom)

After training the simple CNN model, we uti-
lized it to generate a MIDI track from a pinao
recording of tonal scales as a demo example.
The graph below shows the comparison of the
original track and the generated track labeled
by the CNN model. We found that although
the accuracy is only around 80%, most of the
mis-labeled notes do not deviate much from
the corret labels, therefore maintaining the up-
ward and downward trend of the tonal scale.

Figure 5: Original (top) and generated (bottom) track

VI. CoNCLUSION

From the initial experiments on the original
CNN mode, we have discovered that after we
removed the image compressing process from
32x32 into 24x24 pixles, the overall training ac-
curacy increased by 5 percent, from 78% to
83%. We believe the reason behind this is that
the images processed by the original model are
real world objects such as cats, dogs, ships etc.
Given the complexity of these images, com-
pressing or pooling process will not lose too
much feature information and could even help
the images in one category to be more distin-
guishable from other categories. However, our
inputs or spectrograms are relatively simple
images with limited color contrasts which have
high similarities with each other. Therefore,
further compressing them would lose some of
the labeling information, making the machine
learning model less accurate. Based on this
observation, we later on simplified our model
architecture to only 1 layer of CNN and 1 layer
of local ReLU and the new model achieves sim-
ilar results of the original model and takes less
time to train in general.

VII. FUTURE STEPS

We believe there are still room for improve-
ments on dataset processing and the CNN
model to further increase the accuracy. We can
apply more contrasts on the spectrogram to
make the different notes more distinguishable.
The neural network can be modified with more
convolutional layers and less pooling layers
to solve the note classification problem better.
Furthermore, we can explore the polyphonic
music transcription problem using the same

methodology. The polyphonic music tracks can
be split into monophonic tracks using Indepen-
dent Component Analysis (ICA) or other ma-
chine learning algorithms and the same CNN
method can be applied.

VIII. CONTRIBUTION

Chen Cen: Worked on model training with
Tensorflow.

An Jiang: Programmed the preprocessing and
postprocessing Python script, edited most of
the presentation and reports.

We both worked on the preliminary Music In-
formation Retrival research and all the exper-
iments on CNN model for the project. The
project code base can be accessed at [11].

REFERENCES

[1] D. Troxel, 17th International Society for Mu-
sic Information Retrieval Conference.

[2] V. Emiya, R. Badeau, and B. David, “Mul-
tipitch estimation of piano sounds us-
ing a new probabilistic spectral smooth-
ness principle,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 18,
no. 6, pp. 1643-1654, 2010.

[3] G. E. Poliner, “Classification-based music
transcription,” 2008.

[4] E. Nakamura, K. Yoshii, and S. Sagayama,
“Rhythm transcription of polyphonic pi-
ano music based on merged-output hmm
for multiple voices,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Pro-
cessing, vol. 25, no. 4, pp. 794-806, 2017.

[5] “cuda-convnet.” https://code.google,
com/archive/p/cuda-convnet/.

[6] “Convolutional neural networks.”

https://www.tensorflow.org/

—_

tutorials/deep_cnn.

[7] A. Krizhevsky, “The cifar-10 dataset.”
http://www.cs.toronto.edu/ kriz/
cifar.html, 2009.

https://code.google.com/archive/p/cuda-convnet/
https://code.google.com/archive/p/cuda-convnet/
https://www.tensorflow.org/tutorials/deep_cnn
https://www.tensorflow.org/tutorials/deep_cnn
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

8]

[9]

[10]

[11]

O. M. Bjorndalen, “Mido - midi ob-
jects for python.” https://github.com/
olemb/mido.

B. McFee, M. McVicar, O. Nieto, S. Balke,
C. Thome, D. Liang, E. Battenberg,
J. Moore, R. Bittner, R. Yamamoto, D. El-
lis, E-R. Stoter, D. Repetto, S. Waloschek,
C. Carr, S. Kranzler, K. Choi, P. Viktorin,
J. E. Santos, A. Holovaty, W. Pimenta, and
H. Lee, “librosa 0.5.0,” Feb. 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hin-
ton, “Imagenet classification with deep
convolutional neural networks,” Communi-
cations of the ACM, vol. 60, no. 6, pp. 84-90,
2017.

C. Chen and A. Jiang, “Cs229
project github page.” https:
//github.com/flamearrow/229Project|

https://github.com/olemb/mido
https://github.com/olemb/mido
https://github.com/flamearrow/229Project
https://github.com/flamearrow/229Project

	Introduction
	Related work
	Data and processing
	Methodology
	Results
	Conclusion
	Future Steps
	Contribution

