
Grapevine: A Wine Prediction Algorithm Using
Multi-dimensional Clustering Methods

Richard Diehl Martinez
Computer Science

Stanford University
Email: rdm@stanford.edu

Geoffrey Angus
Computer Science

Stanford University
Email: gangus@stanford.edu

Roozbeh Mahdavian
Computer Science

Stanford University
Email: rooz@stanford.edu

Abstract—We present a method for a wine recommendation
system that employs multidimensional clustering and unsuper-
vised learning methods. Our algorithm first performs clustering
on a large corpus of wine reviews. It then uses the resulting wine
clusters as an approximation of the most common flavor palates,
recommending a user a wine by optimizing over a price-quality
ratio within clusters that they demonstrated a preference for.

Keywords—K-means, EM, Wine Prediction.

I. INTRODUCTION

Wine has incredible diversity; there exist over 10,000
different varieties of wine grapes worldwide, and each can be
processed in a hundred thousand unique ways. Sommeliers—
those who dedicate their lives to the art of wine tasting—
work to craft flavor profiles for the wines they are given to
analyze, using their extensive experience to provide nuanced
evaluations of countless bottles of wine every year. But the
majority of people have neither the time nor the money to try
a variety of wines and develop their palate. Typically, the only
claim one can make about a given glass of wine is whether or
not it was enjoyable, and without the ability to identify ones
taste preferences in wine, it is incredibly difficult for one to
discover new wine, and nearly impossible to find wine that
directly matches their individual flavor profile.

We hope to develop an algorithm to address both of these
issues, becoming a personal sommelier for the user. Our
algorithm takes a history of the wine a user has tasted as
input, and returns a set of optimal wines for the user to try
next, as well as a description of the flavor profile that inspired
the recommendations. Thus, the algorithm could become an
avenue for the user to confidently explore wine, and understand
more quickly what they do and do not like in wine.

Formally, we define our problem as an unsupervised learn-
ing problem. Let X ∈ Rm×Rn be the design matrix, where m
is the number of wines in our dataset and n is the number of
features collected for each wine. Additionally, let some H be
some vector describing a user’s history of wine consumption,
where h(i) is some wine the user either liked or disliked. Our
objective is to cluster each x ∈ X to k clusters such that x
resides in a cluster of wines with similar flavor profile. This
clustering is achieved through the use of the k-means and EM
algorithms. Then, given a user’s history H , we seek to provide
some high-quality, affordable wine recommendation w that is
similar to the wines found in H .

II. RELATED LITERATURE

Categorizing and predicting consumer preferences is a
difficult task. Given the especially fickle nature of human
taste, the effective application of machine learning in rec-
ommendation systems has long been studied by researchers
and online retailers alike[1]. Historically, natural language
processing and supervised learning methods have been pri-
marily used to model consumer preference. Support Vector
Machines (SVMs) in particular, were long viewed as the gold-
standard for predicting the degree to which a product matched
with a consumers preferences[2]. In order to ascertain the
qualities of an item or service, natural language processing
and classification methods are often used to extract the relevant
information from a corpus of information about a good. In their
2012 paper, Sakai and Hirokawa demonstrate how to extract
the main feature words out of an article [3]. The method the
researchers outline uses six-fold cross validation on a SVM
trained on a corpus of documents that have been normalized by
term frequency-inverse document frequency (TF-IDF). These
methods, which showed 90% accuracy on test data, have since
been employed in algorithms designed to extract the meanings
out of subjective product reviews, such as wine reviews [4].
Building on this work, McAuley et. al have similarly shown
how using supervised learning methods, features can be
extracted efficiently from corpora of texts consisting of 5
million data points, with multiple dimensions along which
to measure quality of a product [5]. In the domain of wine
recommendation systems in particular, scholars have relied
on supervised methods such as basic least-squares regression
modeling. Frank and Kowalski propose employing simple
regression to estimate the quality of a wine from the wines
objective chemical measurements [6]. Using this model, the
researchers predicted subjective sensory evaluation from a
wines chemical composition. Determining the accuracy of
these models, however, remains a difficult task. Most re-
cently unsupervised methods have begun replacing standards
models for recommendation tasks. This shift in paradigm
has come from the realization that clustering products into
distinct groups makes it possible to increase the accuracy
of recommendations on an individual basis. That is, by first
modeling the general differences between groups of similar
groups, prediction algorithms can then more accurately derive
heuristics for the type of product that fits into a user’s prefer-
ences [7]. This methodology has been applied by companies
like Netflix, which recommend movies to users by first looking
at similarities between videos, and then selecting an optimal,
personalized choice out of this group based on user history

[8]. Our algorithm is based directly off of this framework, and
is described in the subsequent section.

III. DATASET AND FEATURES

Our dataset comprises of wine reviews scraped from Wine-
Spectator.com [9]. Each winery had to be scraped preliminarily
as well, for each review was only available through querying
its winery page. We designed a fault-tolerant system on top
of the scrapy library capable of scraping the wineries and
their respective reviews. Over the course of several days, the
system compiled a list of over 21 thousand wineries and 350
thousand wine reviews from the website. Each raw review
object consists of the following properties: metadata, such as
the wines name, vintage, winery, region, and country; score, as
given by the sommeliers of WineSpectator; the market price;
and finally, the review itself.

1 {
2 "name": "Chambolle-Musigny Les Cras",
3 "url": ...,
4 "country": "France",
5 "review": "Candied cherry, cinnamon,

violet and black currant notes
ride the nervy acidity in this
crisp red. Turns pinched in the
end. Best from 2012 through 2016.
1,500 cases made.",

6 "price:": "\$65",
7 "score": "84",
8 "winery": "Antonin Guyon",
9 "vintage": "2008",

10 "region": "Burgundy"
11 }

Fig. 1. An example JSON object collected from WineSpectator.com

We first filtered wines with scores under 80 points; this
number is a common benchmark used to determine quality
[10], and our ultimate goal is to recommend quality wines.
After doing this, we focused our attention on the properties of
the 4th property: the review text itself.

Our clustering algorithm is based on the features of each
review text. Thus, our feature extractor was a program im-
plemented to process the review strings of each example.
To maximize the salience of words in the review text, we
preprocessed away punctuation, capitalization, and generic
stopwords.

The feature extractor built the design matrix X to have m
rows and n columns, where m is the number of examples in
the dataset and n is the number of words in the vocabulary
used throughout the entire dataset. Each example x(i) is an
n-vector where each x

(i)
j is the TF-IDF value of jth word

in the vocabulary. As we are operating with the underlying
assumption that the words are in sommelier reviews are
incredibly precise, we utilize TF-IDF because of its ability to
capture the uniqueness of words in the vocabulary, a property
essential to the efficacy of our clustering algorithm.

In order to further distill our dataset, we additionally ven-
tured to remove domain-specific stopwords from the dataset.

In order to do this, we ran several iterations of the clustering
algorithm and collected the indices of the top-25 highest valued
elements in the centroids of each cluster. We then mapped
these indices back to the vocabulary. Words common across the
clusters were collected, and after manual verification, removed
if deemed overly generic.

Domain Stopwords
TANNINS FLAVORS
FLAVOR DRINK

WINE FINISH
HINTS FRUIT
NOTES OFFERS
AROMAS STYLE
CHARACTER HINT
BIT DRINKABLE
PALATE IMPORTED

Fig. 2. The list of domain words ultimately removed from the cleaned dataset.

By the end of the process, we have just over 270,000 cleaned
sparse vectors prepped for clustering. The nature of the dataset
is at this point primarily descriptor words, which is essential
to the clustering algorithm’s efficacy.

Fig. 3. A review for a wine (top) and it’s corresponding cleanup (bottom),
with some TF-IDF values labeled. The saturation of the color corresponds to
the relative ”strength” of the TF-IDF value for each word.

IV. METHODOLOGY

Our methodology was divided into two sections: First we
developed a clustering algorithm to group together wines based
on similar wine reviews. This required the use of feature
extraction tools. Secondly, we designed and implemented an
optimization function that within a group of recommended
wines returns to the user a wine with a maximized price-quality
ratio. We will now more closely explore each of these two
sections:

A. Clustering

After scraping our data from WineSpectator.com, we fil-
tered out the reviews for their the descriptive words. As
described in the previous section, we concentrated closely on
keeping the adjectives and descriptive phrases of reviews in
the description. After our filtering step, we were left with the
key descriptive features of each review. Using these isolated
words, we then created a frequency matrix for the corpus of

2

the reviews, normalizing each frequency array using TF-IDF.
This process is visualized for a particular review in Fig. 3.
We also experimented with GLoVE word embeddings over
TF-IFD, which is discussed in detail in Section V.

Using each examples sparse vectors as coordinates, we
experimented with two clustering algorithms; K-means and
EM. Clustering is imperative to our endeavor because it
enables us to reduce our runtimes dramatically during the
recommendation step. By limiting search for optimal wine

Due to long runtimes, we used our k-means implementation
to derive the optimal cluster count k, using the Elbow method
as described by Kodinariya and Makwana [12]. We found that
after k = 32 increases in optimality were insignificant when
compared to time and computational cost.

Fig. 4. SSE over Number of Clusters

Finally, we developed an algorithm for recommendation
using these clusters. The algorithm looks at the history of a
user’s wine consumption. Using those wines, we sample from
a Multinomial distribution where the probability of each of the
k outcomes are dependent on the wines in a cluster the user
liked and didn’t like. If H is the set of wines a user has tried,
xk is the percentage of the users positively reviewed wines in
cluster k, yk is the raw count of wines in the users history
in cluster k, and zk is the percentage of the users negatively
reviewed wines in cluster k, the probability of selecting some
cluster k is as follows:

pk =
xkyk(1− zk)∑|H|
i=1 xiyi(1− zi)

The sample is then used to select the cluster in which
we will search for a recommendation. From this cluster, a
wine from the user’s history is sampled at random with added
multivariate Gaussian noise. This sample then serves as our
benchmark coordinate. In order to take advantage of EM’s soft
clustering property, we then check the benchmark coordinates
likelihood of being in each of the k clusters we have defined
via the multivariate Gaussian probability density function. If
the two highest probabilities are close to equivalent, then we
expand our search space to include both of the aforementioned
clusters.

B. Selection Optimization

Once the search spaces are defined, we iterate through each
of the examples located in the target clusters and return to the

user that which minimizes the following cost function, where
λ is some tunable hyperparameter scaling the weight of wine
similarity:

J(w,w′) =
quality(w′)

price(w′)
+ λ||w − w′||2

Here, w is the sampled history wine, and w′ is each
of the candidate wines up for selection. Quality is defined
as the score of the wine as given by the sommeliers at
WineSpectator.com, and price is defined as the market price of
the wine. The similarity function is simply Euclidian distance.
We initially ran tests using cosine similarity, but ultimately
settled on Euclidian distance because it is the method used by
the clustering algorithms to evaluate closeness of data points.

In order to prevent the scenario in which a user becomes
trapped in a single cluster, this current iteration currently
returns 3 Bets and 1 Wildcard. The algorithm for the selection
of a Wildcard is the same, except the multivariate Gaussian
noise is added with a much broader covariance matrix.

C. Other Considerations

For the purposes of training our model, we were required to
create a proxy for a users history. Using terminology from the
paper published by Netflix, we will refer to this as a cold start.
For the demonstration and user tests, we drafted a variant of the
application capable of short circuiting the prediction algorithm.
We tried two approaches: artificial history generation and
representative coordinate sampling. In both methods, we had
the user fill out a questionnaire detailing their ideal wine.
The artificial history generation implementation then looked
at the top five wines with the highest TF-IDF values for each
of the words and placed them in the history as if the user
had given positive feedback to each of these wines. This was
ineffective due to the fact that the wines were not necessarily
representative of the clusters in which they were assigned.
Thus we opted for representative coordinate sampling.

In the second approach, we took the response from the
user and looked not at the wines, but the cluster centroids
themselves. Because a centroid is representative of the wines
in its cluster, we wrote a script capable of compiling a record
of the top 10 TF-IDF valued indices in each cluster. We then
iterated through the response of the user and matched their
selected keywords to their respective clusters. The clusters
that accumulated the most keywords were selected as target
clusters. The benchmark coordinate is then not sampled from
the users history, but sampled randomly from the centroids of
the target clusters. By using the centroids of the clustering al-
gorithm, we created a cold start algorithm capable of selecting
the most representative wines for a user based on his or her
responses to the questionnaire.

V. RESULTS & DISCUSSION

Our results will be divided into two sections: an evaluation
of our clustering model based on exploratory analysis of our
data, and the results of experiments we have run to evaluate the
result of our prediction algorithm. These two metrics measure
respectively how well our clustering algorithm works, and how
effectively our optimization function is tuned to maximizing

3

the likelihood that the user will purchase the recommended
wine.

Fig. 5. Interface of the ”Cold Start” Questionnaire.

Fig. 6. Recommendations, given ”Licorice,” ”Lemon,” and ”Blackberry.”

Exploratory Analysis of the Clusterings: We ran our model
for 100 iterations, on a random selection of input preferences,
keeping track on each iteration of both the recommended wine
and the descriptive features of the selected wine. We then
assigned a group of colleagues and peers to scan over the input
and output of each iteration, and report whether the descriptive
features of the output roughly match the randomly selected
preferences. We chose to not do this evaluation ourselves for
fear of researcher bias. We chose the following phrasing when
prompting our colleagues (5 individuals) for their input:

Do the following descriptive words [referring to the output
features of the recommended wine] resemble closely the former
set of descriptive words [referring to the input preferences that
our algorithm was initialized with]?

The result of our analysis showed that of the 100 iterations,
91% of times the output wine descriptions were congruent with
the input preferences.

Generally, we observed that our clusters were able to isolate
individual words very well. The following graphs demonstrate
how clusters represent a clear overwhelming proportion of cer-

Fig. 7. Frequency of Non-Zero TF-IDF values for the Word ”Lemon.”

Fig. 8. Frequency of Non-Zero TF-IDF values for the Word ”Plum.”

tain words (in this case comparing the word lemon and plum),
indicating that the clustering algorithm works as expected.

Experiment: After our exploratory analysis, we conducted
a series of experiments to determine whether our optimization
function was correctly tuned to maximize the likelihood that
an individual would purchase the recommended wine our algo-
rithm suggests. Given the lack of labeled data, we again were
required to conduct independent questionnaires to determine
how well our algorithm was attuned to predicting optimal
wines. To gather data, we asked 25 friends to each run our
model five times. Naturally, our experimental design is heavily
flawed: for one we were not able to incorporate a control
group, and the subjects were all (most likely) biased to provide
us with data points that supported our algorithm. After the run
of each iteration, we asked all the participants in our study
group the following question:

If you were to purchase wine, would you buy the recom-
mended wine over the wine that you would normally purchase?

In total, we were able to gather 117 responses (some
subjects did not run the algorithm for the total number of
iterations we instructed them to). Out of these 117 responses,
65% of the time subjects reported they would rather purchase
the recommended wine than their regular choice. When
asked why they would not purchase our recommendation
more often, nearly all subjects (92%) responded that the
recommended wine was too expensive.

Finally, we experimented with GLoVE word embeddings
[13]. The GLoVE algorithm obtains vector representation for
words in a corpus such that the dot product of any two word
vectors tries to equal their probability of co-occurrence over
the corpus. Thus, GLoVE vectors could capture relationships
between different words used in the reviews, as opposed to
just the relative importance of particular words, and therefore

4

led to significantly more nuanced clustering.

We trained GLoVE vectors of size 50 over our corpus
of filtered reviews. We chose to train GLoVE vectors on
our own corpus (as opposed to using pre-trained vectors
over the English language, from corpora like Wikipedia
and Twitter) because the intended meaning of the language
in wine reviews is highly contextual and idiomatic (which
is exactly what makes them inaccessible to the average
person in the first place), and thus GLoVE vectors trained
specifically within this space likely capture the intended
meaning more precisely. Each review was then represented as
a size 50n vector, where n is the size of the vocabulary (in
our case, 13,324). The resulting dimensionality of the design
matrix made clustering efficiently incredibly challenging,
and we resorted to performing mini-batch k-means with k = 12.

Still, the early results were promising: the most representative
reviews of a number of clusters (i.e. those reviews closest to
the centroid) contained several different adjectives with very
similar meaning. In particular, one cluster captured smokey,
tobacco, and cigar, another captured woodsy, earthy, and
mineral, while another captured soft, light, and delicate.

VI. CONCLUSION & FUTURE WORK

Given the outline of the problems listed in the previous
section, it is clear that more work remains to be done in terms
of tuning the hyper-parameters of our model. The discrepancy
we observed between the effective clustering of our wines, and
the moderate performance of our overall prediction algorithm
can be explained by the lack of result data. This makes it
difficult for our model to learn the optimal trade-off between
wine similarity and price-to-quality ratio. Future work will
therefore be concentrated on gathering more user feedback
data on the accuracy of our model predictions. One possible
method of doing so is to run our model as part of a survey
on Mechanical Turk. The survey would ask Mechanical Turk
workers if they would be more likely to purchase the recom-
mended wine over their normal wine selection. Naturally, one
limitation of this approach is that Mechanical Turkers are not
representative of the overall population, and perhaps not of
the clientele who would be most likely to use this algorithm,
potentially biasing our results. Aside from this, the algorithm
has yielded promising results thus far and we look forward to
future iterations on the subject matter.

REFERENCES

[1] Govers, Pascalle CM, and Jan PL Schoormans. Product personality
andits influence on consumer preference. Journal of Consumer Marketing
22.4(2005): 189-197.

[2] Flanagan, Brendan, and Sachio Hirokawa. Support Vector Mind Mapof
Wine Speak. International Conference on Human Interface and theMan-
agement of Information. Springer International Publishing, 2016.

[3] Sakai, Toshihiko, and Sachio Hirokawa. Feature words that classifyprob-
lem sentence in scientific article. Proceedings of the 14th Internation-
alConference on Information Integration and Web-based Applications,
Services.ACM, 2012.

[4] Veale, Roberta, and Pascale Quester. Do consumer expectations match-
experience? Predicting the influence of price and country of origin
onperceptions of product quality. International Business Review 18.2
(2009):134-144.

[5] McAuley, Julian, Jure Leskovec, and Dan Jurafsky. Learning attitudes
andattributes from multi-aspect reviews. Data Mining (ICDM), 2012
IEEE 12thInternational Conference on. IEEE, 2012.APA

[6] Frank, I. E., and Bruce R. Kowalski. Prediction of wine quality and
geo-graphic origin from chemical measurements by parital least-squares
regressionmodeling. Analytica Chimica Acta 162 (1984): 241-251.

[7] Karty, Kevin D. Method and system for predicting personal prefer-
ences.U.S. Patent No. 7,877,346. 25 Jan. 2011.

[8] Gomez-Uribe, Carlos A., and Neil Hunt. The netflix recommender
system:Algorithms, business value, and innovation. ACM Transactions
on Manage-ment Information Systems (TMIS) 6.4 (2016): 13.

[9] Wine Spectator Home, www.winespectator.com
[10] Wine Spectator Home, www.winespectator.com/display/show/id/scoring-

scale
[11] Pennington, Jeffrey, Richard Socher, and Christopher Manning.

Glove:Global vectors for word representation. Proceedings of the
2014 conferenceon empirical methods in natural language processing
(EMNLP). 2014.

[12] Kodinariya, Trupti M., and Prashant R. Makwana. Review on deter-
mining number of Cluster in K-Means Clustering. International Journal
1.6(2013): 90-95.

[13] Jeffrey Pennington, Richard Socher, Christopher D. Manning -
https://nlp.stanford.edu/projects/glove/

VII. CONTRIBUTION

All of us equally contributed the project outline and al-
gorithm design. Below are some things that individual group
member’s took a lead on:

Geoffrey Angus: Augmented the winery scraper to handle
custom input and connect directly to the review scraping
pipeline. Wrote the entire review scraper pipeline from there,
building in failure-redundancy and the ability to take in custom
input. Scraped and compiled the data over the course of
several weeks and then aggregated it into a review JSON file.
Implemented much of the infrastructure required to run the
demo version of the software through both artificial history
generation and representative point sampling. Pair programmed
the predictor algorithm. Brought together the components to
make it work as a cohesive system. Drafted the Dataset and
Features section of the final paper along with most of the
figures in the final report.

Richard Diehl Martinez: Implemented the EM and K-
means clustering algorithms and the pipeline that feeds in the
data to the clustering functions. Also developed the outline for
the feature extraction code. Designed the general layout for
the Classes and Methods used in the data pipeline from the
clustering to the prediction algorithm. Helped with developing
and implementing the optimization function that finds the
optimal wine within a cluster. Wrote a majority of the final
paper.

Roozbeh Mahdavian: Trained GLoVE vectors over the
corpus, and re-architected the pipeline to support representing
them in memory (by iteratively building and repacking sparse
matrices) and training them via mini-batch Kmeans. Also
developed the baseline scraper code, and designed the layout
and all visualizations for the poster. Contributed to developing
the optimization function and the clustering approach. Drafted
the introduction and the GLoVE vector overview of the final
paper.

5

