
0
2
4
6
8
10
12
14

1 6 11 16 21 26 31

Number	of	Words	Changed

Histogram	over	Adversarial	Examples

Crafting	Adversarial	Attacks	on	Recurrent	Neural	Networks	(RNNs)
Mark	Anderson,	Andrew	Bartolo,	Pulkit Tandon

{mark01,	bartolo,	tpulkit}@stanford.edu

Summary Models

Data	&	Features

Intuitive	Black-Box	Adversaries
•	RNNs	are	used	in	a	variety	of	applications	to	recognize	and	predict	
sequential	data.	However,	they	are	vulnerable	to	adversaries; e.g.,	a	
cleverly-placed	word	may	change	the	predicted	sentiment	of	a	
movie review	from	positive	to	negative.
•	We	built	Naïve	Bayes,	SVM,	and	LSTM	models	to	predict	movie	review	
sentiment	and	built	two	black-box	adversaries.	We	show	that	NB	and	SVM	
are	sensitive	to	these	attacks	while	LSTMs	are	relatively	robust.
•	Finally,	we	implemented	a	recent	Jacobian-based	technique	for	
generating	adversaries	for	LSTM,	and	found	that	LSTM	performance	falls	
below	40%	by	replacing	an	average	of	8.7	words.	We	also	found	examples	
where	the	classification	error	was	brought	on	by	a	seemingly-random	
word,	indicating	that	the	LSTM	might	not	be	truly	learning	sentiment.

We	train	on	a	pre-labeled	set	of	12,500	positive	and	12,500	negative	
movie	reviews,	collected	from	IMDb	[1].	Reviews	averaged	233	words.	
For	compatibility	with	the	NumPy and	TensorFlow input	models,	SVM	
and	LSTM	reviews	are	capped	at	250	words.	We	strip	all	punctuation	
from	the	reviews,	but	leave	stop	words.

Training	accuracy	vs.	#	iterations,
64- and	128-hidden-unit	LSTM

The	Word2Vec	+	LSTM	architecture	[3]• Single-Layer	RNN	with	LSTMs
• Linear	SVM
• Naïve	Bayes	with	Laplace	

Smoothing

PCA	run	over	the	dataset.

Features:
1. Bag-of-Words

One-hot	vector	– size	of	the	dictionary	(400k	
words).
Used	for	Naïve	Bayes	and	SVM	models.

2. Word	Vectors	[2]
Pre-determined	embedding	in	50-
dimensional	space.
Used	for	LSTM	model.

Analysis

Jacobian	Saliency	Map	Adversary	[3]

Input:	f,	�⃗�, 𝐷
Algorithm:
1. y	:=		f(�⃗�)
2. 𝑥∗ :=	�⃗�
3. 𝐽' �⃗� 𝑦 =

)*+
),⃗	

4. while	f(𝑥∗)==y:
5. select	a	word	i in	sequence	𝑥∗
6. 𝑤 ∶= 𝑎𝑟𝑚𝑖𝑛5⃗67	 𝑠𝑖𝑔𝑛 𝑥∗ − 𝑧 − 𝑠𝑖𝑔𝑛 𝐽' �⃗� 𝑖, 𝑦
7. 																			𝑥∗[𝑖] :=	𝑤	
8. end
9. return	𝑥∗

�⃗�[2]
=movie

−𝑠𝑖𝑔𝑛 𝐽' �⃗� 𝑖, 𝑦

0

𝑥∗[2]
�⃗� =	“	The	movie	is	terrific”	

y=
Pos

y=
Neg

True
Positive 54 65

True
Negative 110 62

f:	Prediction	Model
X:	Example	Sentence
D:	Dictionary

[1]	A.	Maas,	R.	Daly,	P.	Pham,	D.	Huang,	A.	Ng,	and	C.	Potts,	“Learning	Word	Vectors	for	Sentiment	Analysis,”	
In	Proc.	of	the	49th	Annual	Meeting	of	the	Association	for	Computational	Linguistics:	Human	Language	
Technologies,	‘06,	2011,	pp.	142-150.
[2]	A.	Deshpande,	“Sentiment	Analysis	with	LSTMs,”	Oct.	3,	2017.	[Online].	Available:	
https://github.com/adeshpande3/LSTM-Sentiment-Analysis.
[3]	N.	Papernot,	P.	McDaniel,	A.	Swami,	and	R.	Harang.	“Crafting	Adversarial	Input	Sequences	for	Recurrent	
Neural	Networks.”	Apr.	28,	2016.

References

Histogram	of	Adversarial	Samples
Average	#	Words	
Changed:	8.7

89.24% 

80.98% 
69.64% 

64.27% 

31.66% 

14.05% 

98.19% 

86.51% 
81.65% 80.49% 

54.34% 

32.95% 

94.36% 

81.77% 
79.08%

77.76% 68.17% 

59.36% 

39.86% 

0% 

20% 

40% 

60% 

80% 

100% 

Training Testing	(no	
adversary)

Testing,tack-on Testing,	1-
strongest

Testing,	3-
strongest

Testing,	5-
strongest

Testing,	JSMA

Model	Accuracy	vs.	Adversary

Naïve	Bayes SVM LSTM

• SVM	and	NB	perform	similarly	to	LSTM	on	the	test	set	without	adversary.	
This	implies	the	data	is	well-segregated	- independently	seen	in	PCA	plot.

• The	LSTM	is	most	robust	to	our	black-box	adversaries.
• Black-box	adversaries	were	words	strongly	associated	with	sentiment.
• Model	accuracies	fell	monotonically	with	increasing	adversary	strength.
• Jacobian-based	methods	do	not	always	change	the	most	positive/negative	

words.	Seemingly-random	word	injection	changes	the	prediction,	leading	us	
to	question	whether	LSTMs	are	actually	learning	the	sentiment;	e.g.:
This	excellent	movie	made	me	cry!	→ this	excellent	tsunga telsim grrr cry

• Implement	a	deeper	LSTM	with	mean-pooling	layers
• Optimized	memory	allocation	in	TensorFlow code	for	JSMA	method
• Adversarial	training	of	LSTM	network	based	on	JSMA	adversaries
• Use	Stanford	NLP	Parser	to	automate	grammar	checking

Future	Work

• Based	on	Naïve	Bayes	”strongest”	words	– words	most	polarizing	toward	
positive	or	negative	classification

• Adversarial	Words:
• Positive	Sway:	”edie,”	“antwone,”	“din,”	“gunga,”	”yokai”
• Negative	Sway:	“boll,”	“410,”	“uwe,”	“tashan,”	“hobgoblins”

• Tack-On:	replace	first	word	with	random	adversarial	word
• N	Strongest-Word-Swap:	replace	review’s	N	strongest	word(s)	with	random	

adversarial	word(s);	experimented	for	N<=5

We	performed	a	hyperparameter search	and	
settled	on	an	LSTM	with	a	softmax output	
layer	and	64	hidden	units.	For	the	linear	SVM,	
we	swept	learning	rate	and	tried	different	
features	and	kernels.	The	Naïve	Bayes	model	is	
multinomial	and	uses	log-probabilities.

Accuracy	after	JSMA	=	39.9%


