Crafting Adversarial Attacks on Recurrent Neural Networks (RNNs)

Mark Anderson, Andrew Bartolo, Pulkit Tandon
{mark01, bartolo, tpulkit}@stanford.edu

Intuitive Black-Box Adversaries

Summary * Models

e RNNs are used in a variety of applications to recognize and predict

 Based on Naive Bayes “strongest” words — words most polarizing toward

sequential data. However, they are vulnerable to adversaries; e.g., a Single-Layer RNN with LSTMs The Word2Vec + LSTM architecture [3] ositive or negative classification
cleverly-placed word may change the predicted sentiment of a * Linear SVM P . 8

. Softmax Layer * Adversarial Words:
movie review from positive to negative. * Naive Bayes with Laplace . Positive Swav: “edie” “antwone” “din” “cunea” "vokai”
e We built Naive Bayes, SVM, and LSTM models to predict movie review Smoothing E——— . Negative SWZ. _ ”bol’l nagq0” ”u:/ve B ”’Easﬁan% ’:hoﬁ oblins”
sentiment and built two black-box adversaries. We show that NB and SVM 5 4y o ’ .’ 8
are sensitive to these attacks while LSTMs are relatively robust * Tack-On: replace first word with random adversarial word

Y : S — B I * N Strongest-Word-Swap: replace review’s N strongest word(s) with random

e Finally, we implemented a recent Jacobian-based technique for
generating adversaries for LSTM, and found that LSTM performance falls
below 40% by replacing an average of 8.7 words. We also found examples

Embedd @ Q:D @ kadversarialword(s);experimentedforN<=5 /

where the classification error was brought on by a seemingly-random o woooower 8 R
Qvord, indicating that the LSTM might not be truly learning sentiment. / 1 1. .t 1 T Ja cO b Ian Sa | len Cy M d p Ad versd ry [3]
Training accuracy vs. # iterations, o e movie s v temie
64- and 128-hidden-unit LSTM
°°°°°°°° We performed a hyperparameter search and f: Prediction Model S o o
. settled on an LSTM with a softmax output X: Example Sentence X = " The movie is terrific - 2\ [
ata eatures . . . @n . =sign(J@li,y])
layer and 64 hidden units. For the linear SVM, D: Dictionary x*[2]
we swept learning rate and tfled different | Input: £ %, D
We train on a pre-labeled set of 12,500 positive and 12,500 negative featu.res a.nd kernels. The Naive Bayes modelis Algorithm: %[2]
movie reviews, collected from IMDb [1]. Reviews averaged 233 words. multinomial and uses log-probabilities. 1. y:= f(X) —movie
For compatibility with the NumPy and TensorFlow input models, SVM 2. x* =X
and LSTM reviews are capped at 250 words. We strip all punctuation A _ 3 Jr (&) [y]zahy 0
: 0x
from the reviews, but leave stop words. Nda I SIS R
PCA run over the dataset. y 4. while f(x*)==y: .
Lo 5. select a word i in sequence x*
[lMllh’ Movie Review Dataset L ' « SVM and NB perform similarly to LSTM on the test set without adversary. 6. W= arTLnZED [sign(x* = 2) = sign(J; (DL, y])|
. s Devser | Tewset R | This implies the data is well-segregated - independently seen in PCA plot. 7. x*[i]=w
Reviews 12,500 6,250 | 6,250 | 4 R ‘ e The LSTM is most robust to our black-box adversaries. . end _
hegative 12,500 6,250 | 6,250 | | as ‘ * Black-box adversaries were words strongly associated with sentiment. 7 return x
of okl | . Mode.I accuracies fell monotonically with increasing adversar.y.strength.. - - Histogram of Adversarial Samples
Features: T * Jacobian-based methods do not always change the most positive/negative Pos Neg Average # Words
. 4. . Ch d: 8.7
1. Bag-of-Words . words. Seemingly-random word injection changes the prediction, leading us True 10 e
. . . 8
One-hot vector — size of the dictionary (400k to question whether LSTMs are actually learning the sentiment; e.g.: Positive 0> 6
walked 4
This excellent movie made me cry! = this excellent tsunga telsim grrr cr T I II II I I I II II
words). o / . SHEry Negmtive 110 82 ERRRRANRRE il _Ni-RANEE] =
Used for Naive Bayes and SVM models. 1 6 11 16 21 26 31
O S Model Accuracy vs. Adversar
2. Word Vecto.rs [2] o valking ’1. Y Y Accuracy after JSMA = 39.9% Number of Words Changed
Pre-determined embedding in 50- ‘ 100% o k /
dimensional space. swim?ing 0%
Used for LSTM model.
_ Y 0% References
40% e [1] A. Maas, R. Daly, P. Pham, D. Huang, A. Ng, and C. Potts, “Learning Word Vectors for Sentiment Analysis,”
o In Proc. of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
F Utu re WO rk 20% Technologies, ‘06, 2011, pp. 142-150.
I | o i) 0% [2] A. Deshpande, “Sentiment Analysis with LSTMs,” Oct. 3, 2017. [Online]. Available:
. Icr)np.er?ﬁer(;t 2 qeeper :_ISTM.WIt. r_TI_\ean-pFolo ns jyefrs ISMA hod Training Testing (no Testing,tack-on Testing, 1- Testing, 3- Testing, 5- Testing, JSSMA https://github.com/adeshpande3/LSTM-Sentiment-Analysis.
ptimized memory allocation in fensorkiow code for metho adversary) strongest strongest strongest [3] N. Papernot, P. McDaniel, A. Swami, and R. Harang. “Crafting Adversarial Input Sequences for Recurrent
* Adversarial training of LSTM network based on JSMA adversaries Neural Networks.” Apr. 28, 2016.
\ e Use Stanford NLP Parser to automate grammar checking / ——Naive Bayes —-*-SVM --LSTM \ /

