

Introduction

We built several models capable of recognizing emotions from facial expressions. Using the FER-2013 dataset of non-posed grayscale images, we achieve 47.8% accuracy using an SVM and 66.5% using a CNN; on the CK+ dataset, we achieve 99.5% accuracy.

We then built a real-time system to detect faces from a video feed and continuously classify them using our model, demonstrating the ability to transfer skills learned on the static datasets.

Data

We trained our model on two datasets:

FER-2013 Dataset^[1]

- 28,000 labeled emotions in training set, 3,500 labeled emotions in development set, and 3,500 labeled emotions in test set
- Images are posed and un-posed headshots: 48x48 pixels, grayscale
- 7 emotions: angry, disgust, afraid, happy, sad, surprised, neutral
- In Kaggle competition, top accuracy for FER-2013 was 71%

CK+ (extended Cohn-Kanade) Dataset^[3]

- 5,876 labeled images of posed individuals
- Images are posed headshots: 640x490 pixels, mostly grayscale
- 8 emotions: angry, disgust, afraid, happy, sad, surprised, contempt, neutral

SVM Model

For our baseline, we made both a one vs one (OVO) (rbf kernel) and a one vs all (OVA) (linear kernel) SVM. We experimented with raw features, scaled features, HOG features, and also tried reducing the feature space using PCA.^[2]

CNN Model

We trained our CNN on the FER2013 dataset, and experimented with a variety of techniques and architectures. Data augmentation helped considerably: we randomly rotate, shift, flip, crop, and sheer our training images.

The CNN's architecture is reminiscent of LeNet, but with more parameters: $Conv(32, 5x5) \rightarrow Conv(64, 5x5) \rightarrow MaxPool(2x2) \rightarrow Conv2D(128, 3x3) \rightarrow Conv(64, 5x5) \rightarrow Conv(64, 5$ $Dropout(0.1) \rightarrow Maxpool(2x2) \rightarrow FullyConnected(2048) \rightarrow Dropout(0.5) \rightarrow$ FullyConnected(1024) \rightarrow Dropout(0.5) \rightarrow Softmax(num_emotions)

All Convolutional and FC layers use ReLU activation. Dropout is used to prevent overfitting; together with the randomized data augmentation, train accuracy is actually kept below dev accuracy. We found the best optimizer to be Adadelta, using categorical cross-entropy loss.

References

[1] "Challenges in Representation Learning: A report on three machine learning contests." I Goodfellow, D Erhan, PL Carrier, A Courville, M Mirza, B Hamner, W Cukierski, Y Tang, DH Lee, Y Zhou, C Ramaiah, F Feng, R Li, X Wang, D Athanasakis, J Shawe-Taylor, M Milakov, J Park, R Ionescu, M Popescu, C Grozea, J Bergstra, J Xie, L Romaszko, B Xu, Z Chuang, and Y. Bengio. arXiv 2013.

Real-time Emotion Recognition from Facial Expressions

Minh-An Quinn, Guilherme Reis, Grant Sivesind, {minhan, greis, gsivesin}@stanford.edu Stanford University, CS229, Autumn 2017

Figure 1: Average faces of each emotion from FER-2013 From left to right: happy, surprise, disgust, neutral, fear, anger, sad

Figure 3: Model accuracy during training for CNN on FER-2013

[2] Dumas, Melanie. "Emotional Expression Recognition Using Support Vector Machines." Machine Perception Lab, University of California, 2001.

[3] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar and I. Matthews, "The Extended Cohn-Kanade Dataset (CK+): A complete facial expression dataset for action unit and emotion-specified expression," in 3rd IEEE Workshop on CVPR for Human Communicative Behavior Analysis, 2010

[4] Goodfellow, I. J., Erhan, D., Carrier, P. L., Courville, A., Mirza, M., Hamner, B.,... Bengio, Y. (2015). Challenges in representation learning: A report on three machine learning contests. Neural Networks, 64, 59-63. doi:10.1016/j.neunet.2014.09.005

Linear

Results (FER-2013)			
Optimization	Featurization/ Hyperparameters	Training Accuracy	Test Accuracy
SVM (OVO)	Scaled pixels	43.4%	38.6%
SVM (OVO)	Scaled pixels, PCA – 25 comps	41.9%	38.6%
ear SVM (OVA)	HOG (4,4) pixels/cell	67.2%	47.8%
CNN	See CNN Model Section	65.0%	66.5%

Real-time Classification

We use a webcam's video feed and OpenCV's implementation of Haar Cascades to detect a square face region. We extract, grayscale, and resize the face region to be 48x48. We then use the CNN model to predict a probability distribution over emotions, and display that visually. Using GPU acceleration, this works with no lag in real-time.

Discussion

On FER-2013, we achieve 66.5% accuracy using the CNN, well above guessing the most common class (24%) but a little below the top Kaggle score (71%). Human scores on FER-2013 are 65% +/- 5%. On the CK+ dataset, we achieve an accuracy of 99.55% using an SVM - which although near-perfect, is in line with what is reported in literature. All accuracies were computed on blind test sets.

We decided to focus on the FER-2013 datasets because its more diverse, un-posed images more closely reflect the distribution of images in real-time video capture. Real-time classification better exposed our model's strengths. Neutral, Happy, and Surprised are consistently well-detected. It also revealed a bias in our dataset: certain people have their emotions detected much more accurately. Artifacts such as glasses, beards, and poor illumination significantly affect performance.

Future Work

To expand upon our work, further work can be done to:

Refine the CNN structure: replace redundant parameters with others in more useful places in the architecture; in adapting the learning rate decay schedule; in adapting the location and probability of dropout; and in experimenting with stride sizes.

Diversify static datasets to more closely resemble real-time data distribution