
● Training: NUCLE (NUS Corpus of Learner English)

● Development: Test set for CONLL 2013 shared task

● Test: Test set for CONLL 2014 shared task

● SMT Translation Model:

NUCLE, Lang-8 Corpus of Learner English v1.0

● SMT Language Model:

English Wikipedia (~1.78 billion tokens)
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Objective

Dataset

Results
● Mitigating the limitations of providing manual writing

feedback for English language learners by automation

of Grammatical Error Correction (GEC)

● While rule-based models and SMT have been the

popular choice, neural networks have the potential to

improve results by leveraging global context and

capture non-linear relationships

● The presented work integrates Statistical Machine

Translation (SMT) model with a Neural Network

Global Lexicon Model (NNGLM)

● The proposed model enhances SMT baseline

performance by F0.5 score of 0.57

Model

NNGLM Architecture

.

● Target hypothesis were generated by SMT using default

features in Moses, further scored by NNGLM which predicts

the presence of words in the corrected output

● NNGLM estimates the overall probability of a target hypothesis

given the source sentence by concatenating the produced

probabilities of individual words present in the sentence, as:

𝑃 𝑇ℎ 𝑆 ≈ෑ
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● The individual word probabilities 𝑃 𝑡 𝑆 are outputs of the

NNGLM which is a feed forward neural network with 3 hidden

layers trained using mini-batch gradient descent to minimize

cross entropy loss.

● NNGLM architecture was chosen after investigating impact of

network configurations like no. of hidden layers, no. of neurons,

learning rate, and batch size within computational limitations

.

Discussion

Future Work

References𝐻1 = 1000; 𝐻2 = 500; 𝐻3 = 1000;  α = 0.02; #Batch: 15

Train data Dev. data Test data

# essays 1,397 50 50

# sentences 57,151 1,381 1,312

# word tokens 1,61,567 29,207 30,144

Preprocessing
● Source and Target vocabularies were generated for a

binary bag of words representation after information

extraction from the Corpus

● Sentence pairs which were incomplete, or too long (>

80 tokens), or offered no corrections, were removed
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[ ෠𝑇𝑗 log 𝑝 𝑡𝑗 𝑆 + (1 − ෠𝑇𝑗) log(1 −𝑝 𝑡𝑗 𝑆 )]

Training Dev. Test

P 52.26 50.84 50.76

R 23.67 23.39 23.43

F0.5 42.09 41.17 41.15

Results on training, development, and test data

Comparison of results against SMT Baseline, and Ref. [1]

SMT baseline Ref. [1] Proposed

P 50.56 22.68 50.76

R 22.68 23.21 23.43

F0.5 40.58 41.01 41.15

Sample system output for an input from test data

• Input: Above all, life is more important than secret.

• Output: Above all, life is more important than secrets.

• Reference: Above all, life is more important than secrets.

● The ability of NNGLM to model words and phrases in

continuous phase, provide global context and capture non-

linear mapping, enables them to generalize better and provide

improved GEC corrections.

● Integrating Neural Network Joint Model on the SMT baseline

along with NNGLM can offer further improvement

● The F0.5 score of the proposed model can be enhanced with

use of more NLP tools and extensive training on varied data
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