Detecting Thoracic Diseases from Chest X-Ray Images

CS 229 Fall 2017

Binit Topiwala, Mariam Alawadi, Hari Prasad (topbinit, malawadi, hprasad)@stanford.edu

Introduction and motivation

- We developed classifiers to find any potential lung diseases from chest X-ray
- Built independent binary classifiers for each of the lung diseases
- Trained Logistic Regression and SVM models on top of SIFT and HoG features extracted from X-ray image

Dataset

- Published by National Institutes of Health (NIH) Clinical Center
- 100,000+ frontal-view X-ray images
- 32,717 unique patients, 14 lung diseases
- Each image has multi-label
- Images are gray scale of size 1024 x 1024

Features

- Scaled 1024 x 1024 image to 224 x 224
- Cropped image to make lungs a focal point, resulting image size 180 x 200
- Applied histogram equalizer to increase contrast of the image
- Derived **SIFT** and **HoG** features. Both techniques helps in finding robust key-points in the image

Models

- [1] http://scikit-learn.org/
- [2] https://kushalvyas.github.io/BOV.html
- [3] https://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html

Results

SIFT

Logistic Regression

Train

	f1	precision	recall
Cardiomegaly	0.66	0.66	0.66
Edema	0.75	0.73	0.76
Emphysema	0.54	0.65	0.47
Hernia	0.77	0.87	0.69
Pneumonia	0.58	0.63	0.54
Fibrosis	0.59	0.62	0.56
Pneumothorax	0.63	0.64	0.63

Test

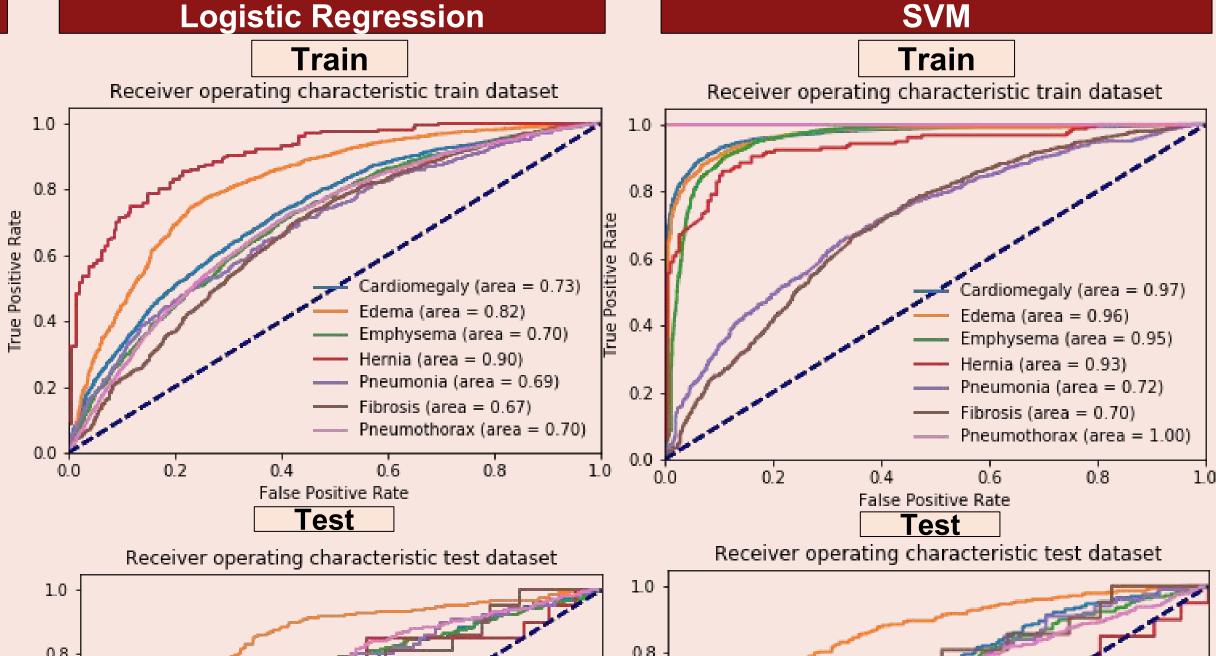
0.62

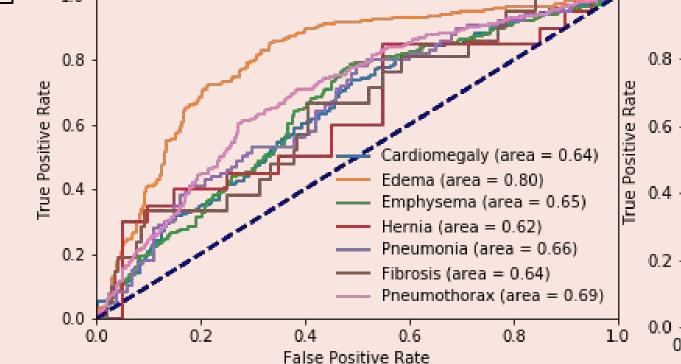
Cardiomegaly

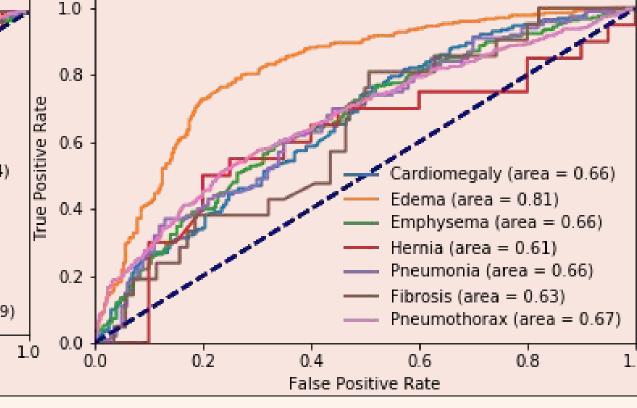
Emphysema

Pneumonia

Pneumothorax


Edema


	Tra	in	
	f1	precision	recall
Cardiomegaly	0.91	0.92	0.9
Edema	0.9	0.89	0.91
Emphysema	0.88	0.89	0.88
Hernia	0.85	0.88	0.83
Pneumonia	0.61	0.66	0.56
Fibrosis	0.66	0.63	0.69
Pneumothorax	1.0	1.0	1.0


SVM

lest				
	f1	precision	recall	
ardiomegaly	0.6	0.59	0.62	
dema	0.76	0.76	0.76	
nphysema	0.57	0.65	0.5	
ernia	0.59	0.65	0.55	
neumonia	0.52	0.62	0.45	
brosis	0.22	0.14	0.48	
neumothorax	0.61	0.65	0.58	

	Train Dataset size
Cardiomegaly	4528
Edema	3413
Emphysema	3687
Hernia	345
Pneumonia	1919
Fibrosis	2475
Pneumothorax	8139

Models

Logistic Regression

Cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{1 + e^{-\theta^T x}} - y^{(i)} \right)^2$$

SVM with Radial basis function

O Cost function:
$$J_{\lambda}(\alpha) = \frac{1}{m} \sum_{i=1}^{m} L(K^{(i)T}\alpha, y^{(i)}) + \frac{\lambda}{2} \alpha^{T} K \alpha$$

 $L(z, y) = \max\{0, 1 - yz\}$

$$K(x,z) = \exp\left(-\frac{1}{2\tau^2}||x-z||_2^2\right)$$

Discussion

- Logistic regression seems to be generalizing much better than SVM(Kernel) for SIFT. SVM is overfitting training data
- SIFT was able to detect various descriptors on the lung. in the image, that proved useful as a features

Future

- Pre-trained CNN models for feature extraction
- Min-hashing to generate feature
- HoG with PCA
- Pre-processing to make lungs more focal