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1 Introduction 

As twitter gains great popularity as an online social networking service in recent years, tweets on twitter 
become a valuable source of information for companies to get feedbacks from their customers. However, 
extracting such information from seemingly random comments and reviews is not an easy task due to the 

scale of data size and the difficulty in semantic analysis. For example, someone tweets: “@VirginAmerica 
Hey first time flyer next week – excited! But I’m having a hard time getting my flights added to my Elevate 
account. Help?” Is she happy with the flight experience or not? If not, what makes her unhappy? Having 
machines answer these types of questions and learn the sentiment of each tweet automatically will be 
extremely helpful for service providers to understand the strength and weakness of their products and to 
improve them in the future. 

In this paper, we focus on reviews on twitter for major U.S. airlines and try to extract sentiment and opinions 

from these reviews. We explored four learning techniques: Naïve Bayes, Support Vector Machines (SVM), 
lexicon-based methods[1] and Convolutional Neural Networks (CNN), to predict the sentiment of these 

tweets – positive, neutral or negative (referred as sentiment task). In addition, for negative reviews, we also 
applied the same techniques to classify the reasons of bad feedbacks to see whether it is due to late flight, 
cancelled flight, flight booking problems, or customer service issue, etc. (referred as negative reason task). 
We use N-gram features as well as work2vec features[2] as input to our algorithms.  

2 Related Work 

With the rapid growth of social networks and online discussion forum, the web has been rich in user-
generated free-text data, where users can express various attitudes towards products, which have been 
attracting researchers into sentiment analysis[3, 4]. Sentiment analysis plays an important role in many 
applications, including opinion retrieval[5], opinion oriented document summarization[6], and word-of-mouth 
tracking[7].  

To determine whether a document or a sentence expresses a positive or negative sentiment, two main 
approaches are commonly used: the lexicon-based approach and the machine learning-based approach. The 
lexicon-based approach involves calculating orientation for a document from the semantic orientation of 
words or phrases in the document[8]. The machine learning-based approach involves building classifiers from 
labeled instances of texts or sentences[9] and typically trains sentiment classifiers using features such as 
unigrams or bigrams. Most techniques use some form of supervised learning by applying different learning 
techniques such as Naive Bayes, Maximum Entropy and Support Vector Machines. In our project, we 
explored both lexicon-based approach and machine learning-based approach and compared their performance. 

3 Dataset and Features 

3.1 Dataset 

Our data is available online[10]. It has 14640 valid tweets from 2/17/2015 to 2/24/2015 related to reviews 
of major U.S. airlines, containing sentiment label, negative reason label, tweets content and other meta 
information like location, user ID etc. The data fraction is roughly 15% positive, 65% negative, and 20% 
neutral. We split the data into 80% as the training set and 20% for testing, and we use 5-fold cross-validation 
to choose hyper-parameters. Since our training and testing only based on tweets content, in later sections 

we refer tweets content as “data”. We also assume that each tweet has only one label negative reason label. 

What’s more, sentiment label is one of positive, neutral or negative; and negative reason label is one of the 
11 classes: not negative (not a real negative reason, serves as a placeholder), can't tell (negative tweets but 
not indicating any reason), bad flight, late flight, customer service issue, booking problem, lost luggage, flight 
attendant complaints, cancelled flight, damaged luggage, long lines. 

3.2 N-gram Features with Preprocessing 

N-gram feature uses concatenated words as feature in the hope that it can capture the information between 

words and phrases. For example, a sentence “This is a sunny day” extracted by 2-gram features would be 

sparse vector as [“this is”, “is a”, “a sunny”, “sunny day”]. 

In addition, to unify emoji and other special words (referred as tokens in later sections), we preprocess the 
training and test data by replace these emoji or special words into unified tokens as indicated in Table 1. 
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Then, tokens appear too frequent like word “the” or too seldom is unlikely to contain useful information, 
thus we remove all tokens that appears too frequent of too seldom. The threshold is searched via grid 
searching using 5-fold cross validation, more details in Section 4.1 and Section 4.2. 

Table 1 Token replacement 

From To 
Links, urls “theurladdresstoken” 

Telephone numbers “thephonenumbertoken” 

Number stars with ‘$’ symbol “themoneytoken” 
Other numbers “othernumbertoken” 

;)  :)  (space)xD  ;D  :D  (space)XD  ;-D  :-D  ;-)  :-) “thehappyfacetoken” 
:(  :-(  (space)TT(space) “theunhappyfacetoken” 

3.3 Word2vec Features 

Word2vec is a state-of-the-art method proposed by Tomas Mikolov[2] for word representation learning, using 
Skip-Gram and continuous bag of words (CBOW) models. In word2vec, a word is represented by a real-
valued vector of fixed low dimension (usually by several hundreds). It is empirically shown to preserve 

linguistic regularities and semantic relationships between words. For example, V(king) – V(queen) ≈ V(man) 

– V(woman), where V denotes “vector of”. It is also believed that words that are highly correlated are likely 
to be closer to each other in the vector space compared with others that co-occur less frequently.  

4 Methods 

4.1 Naïve Bayes 

This method is based on probabilistic inference rules. Given 
1 2( , ,... )nx x x x  be some n features of some test 

sample, and we want to label it to class with 
1max [ | ,..., ]k nP C x x , the probability of the data being for each 

possible class 
k

C . In our case, 
i

x  is each N-gram feature and 
k

C  is the target class. Using Bayes' theorem, 

the conditional probability is rewritten as 
1 1[ | ,..., ] [ ] [ | ]... [ | ]nk n k k kP C x x P C P x C P x C , where [ ]

k
P C  is referred as 

prior and 
1[ | ]... [ | ]k n kP x C P x C  is referred as likelihood. The training part is to find [ | ]

kn
P x C  on the dataset by 

counting, and the prediction is by labeling one sample to class y by  

1
{1,..., }

arg max [ ] [ | ]... [ | ]k k k
K

n
k

y P C P x C P x C


  

4.2 Support Vector Machines (SVM) 

SVM is based on finding the maximum margin between different classes by determining w and b in 
0w x b   , the hyperplane separating classes. Mathematically, binary-class SVM minimizes 

(( ) ) 2
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n

ii
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C max y ww x b
n




    

where ( ) { 1,1}iy    is the true label,   is the regularization term, C is the penalty parameter of error term, 

and ( ) ( )(( 1 ))0, i imax w x by    is the loss of miss classification, also known as hinge loss. Note that there are 

many versions of SVM, what we use is a linear SVM with hinge loss due to computational efficiency. The 
training is done by finding w and b via coordinate descent and the prediction is done be sgn( )y w x b   . 

4.3 Lexicon-based Method 

Lexicon-based methods are based on a pre-trained word (lexicon) list which can tell whether a word has a 
positive or negative sentiment in general and to what extent. For each text, it will check every word and 
aggregate the word sentiment score into the sentence/paragraph sentiment score. A simple aggregating way 
is to average the word scores: if the average score is larger than a threshold   , then the sentence will be 
predicted as positive; if the score is less than another threshold   , it will be predicted as negative; otherwise 

it will be considered as neutral. Advanced lexicon-based methods also involve other factors (e.g. negation, 
stress) in the aggregation formula. 

4.4 Convolutional Neural Networks (CNN) 

Convolution neural network (CNN) is a combination of neural network and convolution operator, where 
neural network can learn the non-linear relationship between explicit and hidden features and convolution 
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operator can capture the local region information in features. Kim [11] proposed a CNN architecture with 
two channels and multiple filter sizes for general text classification tasks. Our CNN are based on his 
architecture, which has only one channel but with an extra hidden layer. The structure of our neural network 
is shown in Figure 1. 

 

Figure 1 CNN structure in detail 

Our network has five layers in total. The first layer is the input feature layer. For each sentence or paragraph, 
the rows in its feature matrix correspond to each of its word in the same order. More concretely, each row 
is a feature vector (e.g. word2vec feature) of the corresponding word. The second layer is convolution layer. 
We applied convolution on the input layer using multiple filters with different sizes. Note that the width of 
each filter must be the same as length of word2vec feature. This is because different dimensions of word2vec 

feature have no correlation to each other and thus don’t contain “local region feature” (apply convolution 
among them will be useless). 

The third layer is a max-over-time pooling layer. Unlike pooling layer in computer vision, this layer will not 
take maximum values over local regions of feature maps from previous layer; instead, it takes the maximum 
value over each entire feature map (max-over-time) to form a more compact feature map. The idea is to 
capture the most important feature of each feature map while dealing with variable length of text data[11]. 
The fourth layer is a fully connected hidden layer with sigmoid function. And the fifth layer is a fully 
connected layer with softmax output. 

The idea behind this network is to use convolution layer to capture the local feature among words (similar 
to N-gram features), use two fully connected layers to learn high-level features appropriate for specific 
classification tasks, and use pooling layer to prevent overfitting and deal with different lengths of text data. 

5 Experiments, Results and Discussion 

5.1 Naïve Bayes and SVM 

We use N-gram features for Naïve Bayes method and as described in Section 3.2, we remove tokens that 
appear too frequent or too seldom, the threshold is chosen by grid searching on 5-fold cross validation. The 

searched hyper-parameters’ space is shown in Table 2, where min-df is the minimal occurrence of a token in 

the training dataset; max-df is the maximal occurrence rate of a token in the training dataset; N is the N in 
the N-gram, the number of adjacent words we took into account when extracting each feature. 

As for SVM, we use a linear SVM with hinge loss and turn the multi-classification into binary classification 
by one-versus-all method, that is for each class train a model that separates it from the rest. As for features 
and hyper-parameters  for SVM, we still use the N-gram features and using 5-fold cross validation to search 

hyper-parameters in Table 2, plus a {1,10,100,500,750,1000,1250,1500,2000}C . 

For the sentiment task, gird search on hyper-parameters gives the best combination as min-df=3, max-

df=0.9, N=1 for Naïve Bayes and min-df=1, max-df=0.95, N=(1, 2) - meaning the combined form of 1-gram 
and 2-gram, and C=1250 for SVM. The detailed performance is in Table 3. 
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Table 2 Hyper-parameters search space 

Parameter Range 
min-df 0, 1, 2, 3, 5, 7 
max-df 0.8, 0.9, 0.95, 0.97 

N 1, 2, 3 

Table 3 Naïve Bayes and SVM performance for sentiment task 

  Naïve Bayes Linear SVM 
Overall Accuracy 0.712 0.796 

Category Precision Recall F1-measure Precision Recall F1-measure 
Positive 0.916 0.328 0.482 0.812 0.678 0.739 
Negative 0.697 0.988 0.818 0.831 0.918 0.873 
Neutral 0.718 0.246 0.367 0.667 0.559 0.608 

For the negative reason task, gird search on hyper-parameters gives the best combination as min-df=7, max-

df=0.8, N=(1, 2, 3) - meaning the combined form of 1-gram, 2-gram and 3-gram, for Naïve Bayes; and min-
df=0, max-df=0.97, N=(1, 2, 3), C=1500 for SVM. The detailed performance is in Table 4, where N/A in 
some rows mean that classifier failed to predict any example as the corresponding classes. 

Table 4 Naïve Bayes and SVM performance for negative reason task 

 Naïve Bayes  SVM 
Overall Accuracy 0.576 0.648 

Category Recall Precision F1-measure Recall Precision F1-measure 
not negative 0.566 0.941 0.707 0.776 0.810 0.793 

can't tell 0.667 0.069 0.125 0.355 0.238 0.285 
bad flight 1.000 0.008 0.015 0.521 0.285 0.368 
late flight 0.676 0.461 0.548 0.588 0.694 0.637 

customer service issue 0.553 0.670 0.606 0.582 0.684 0.629 
booking problem N/A 0.000 N/A 0.419 0.255 0.317 

lost luggage 0.842 0.122 0.213 0.628 0.710 0.667 
flight attendant complaints N/A 0.000 N/A 0.551 0.278 0.370 

cancelled flight 0.789 0.302 0.437 0.596 0.711 0.648 
damaged luggage N/A 0.000 N/A 1.000 0.100 0.182 

long lines N/A 0.000 N/A 0.300 0.094 0.143 

Naïve Bayes is more like a baseline model for us, it performs worst as expected, however it runs much faster 
than SVM and CNN, making it useful when dataset grows even larger. After the grid search, we also noticed 

that hyper-parameters can influence the performance a lot, it improves SVM’s performance by near 8 percent 
after the grid search. SVM performs well in both tasks as expected, since the data is somewhat separable by 

support vectors/words like “good” or “bad” for sentiment task and “late”, “expensive” for negative reason task. 

5.2 Lexicon-based Method 

Lexicon-based method can only be applied on sentiment task, not the negative reason task, due to the public 
database is trained only on the sentiment data. In detail, we use three different trained word lists[12-14], 
and weight the score of each list to get a final sentiment score of 3293 positive and 6493 negative words, 

which cover 15% words of our corpus. Our negation rules include: 1) Negating from negation word (e.g. “no”, 

“never”, “n’t”, “not”, “little”) till the end of sentence; 2) Negating from negation word (e.g. “although”, “though”, 

“even if”) till next punctuation; and 3) Negating from the beginning till the negation word (e.g. “but”, 

“however”). We use averaging as the aggregation function. We did a grid search to find the most appropriate 

threshold parameters, and the final values we used are: 𝛼 = 0.3, β = −0.7. 

Since lexicon-based method doesn’t need training, we test the algorithm on the whole dataset and get the 
following result in Table 5. 

Table 5 Lexicon-based method performance for sentiment task 

 Category Recall Precision F1-measure Overall Accuracy 
Positive 0.650 0.475 0.549 

0.652 Negative 0.800 0.744 0.769 
Neutral 0.222 0.435 0.294 

Compared to supervised learning method, lexicon-based method has a poor overall performance. We also 
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found that this method is not good at classifying neutral reviews. That’ s because only when the review get 
a near zero average score will it be considered as neutral, which usually occur when only few words of the 
review are covered by word list. In lexicon-based methods, the low coverage rate of word list can cause 
problem in prediction. And in the airline reviews corpus, many positive reviews are misclassified because 
these reviews also give some negative feedbacks/suggestions while thumbing up, which disturb the prediction 

a lot. Even when we use a low positive threshold, where 𝛼 = 0.3, the performance on positive reviews are 

not so good; and if we use an even lower threshold 𝛼, the performance on neutral reviews will go down 
instead. This is the trade-off in lexicon-based method. 

5.3 Convolutional Neural Networks (CNN) 

We trained word2vec features of 100 dimensions over 500,000 unlabeled tweets using Skip-Gram with 
negative sampling. The filter heights we chose are 2, 3 and 4, which is because empirically 5 or more gram 
features often produce noises in text classification. And we used 10 different filters for each filter heights in 
the network. So after max-over-time pooling, we will have a 30 x 1 feature map. The number of neurons 
used in the first fully connected layer is 20, which yield a best result among 10, 15, 20 and 25. A more 
thorough grid search on these hyper-parameters cannot be applied due to the long training time of CNN. 

The results for sentiment task and negative reason task are in Table 6 and Table 7 respectively, where N/A 
in some rows mean that classifier failed to predict any example as the corresponding classes. 

Table 6 CNN performance for sentiment task 

Category Recall Precision F1-measure Overall Accuracy 
Positive 0.655 0.795 0.718 

0.790 Negative 0.937 0.796 0.861 

Neutral 0.418 0.687 0.520 

Table 7 CNN performance for negative reason task 

Overall Accuracy 0.601 
Category Recall Precision F1-measure 

not negative 0.649 0.854 0.738 
can't tell 0.270 0.197 0.228 
bad flight 0.265 0.155 0.196 
late flight 0.617 0.532 0.571 

customer service issue 0.581 0.711 0.639 
booking problem 0.163 0.132 0.146 

lost luggage 0.629 0.538 0.580 
flight attendant complaints 0.169 0.113 0.136 

cancelled flight 0.607 0.653 0.629 
damaged luggage N/A 0.000 N/A 

long lines N/A 0.000 N/A 

We see that CNN performs pretty well in the sentiment classification task. This is because word2vec extracts 
semantic features of words and the convolution neural network can capture some local feature among 
adjacent while learning useful high-level features through training, but in this task CNN didn’ t outperform 
SVM as expected. Also, in the negative reason classification task, CNN got a much lower overall accuracy 
than SVM. The learning curve is in Figure 2, where the training error is measured by cross entropy and the 
test error is measured by (1 - accuracy). We find that when we got a decreasing training error, the test error 

didn’t go down but increased at the end. These results are probably because: 1) the size of our dataset is not 
large enough for the training of CNN, which results in overfitting; 2) the word2vec feature we trained might 
has noises and not accurate enough; 3) the convolution operation on text data might not be as effective to 
capture local features as applied on image data; and 4) the max-over-time pooling operation might lose some 
important local information. 

6 Conclusion and Future Work 

In conclusion, we explored four learning techniques and successfully applied them on our learning problem. 
SVM performs best and yields 79.6% accuracy in sentiment task and 64.8% accuracy in negative reason task. 
We also tried CNN with word2vec features, which gives promising results and would be useful if we have a 
larger labeled dataset for training. 

In the future, we consider to combine Recurrent Neural Networks (RNN) and CNN[15] since RNN can 

‘remember’ all previous information of a tweet and CNN can well capture the inter-word information.  

Figure 2 CNN learning curve for sentiment 
task (above) and negative reason task (below) 
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