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1 Introduction

The CO2 reduction reaction has garnered widespread at-
tention in the scientific community due to its potential
to both produce renewable fuels and mitigate the im-
pact of anthropogenic CO2 emissions. Polycrystalline
copper (Cu) is the only known transition metal to pro-
duce hydrocarbons at reasonable efficiency but at a ex-
tremely large overpotential/energy cost[1]. Experimen-
tal and theoretical studies have found that the CO hy-
drogenation step of the reaction pathway to produce for-
mate is the rate limiting step[2]. This is due to the
high activation barrier for this reaction step, which is
dependent on the CO binding energy. Therefore, the
CO binding energy is the parameter that is routinely
screened when searching for new active catalysts. Den-
sity Functional Theory (DFT) is the main computational
tool used to screen potential candidate materials. In
this paper, we aim to accelerate the material screening
process with machine learning algorithms by creating a
model that can accurately estimate CO binding energy
on any given material surface. The inputs of our mod-
els will be features that describe the adsorbate-catalyst
atom-network, and we used linear regression, k-neighbor
regression, neural networks, kernel ridge regression, sup-
port vector regression, and Gaussian processes to predict
the binding energy (in eV) of each atomic network.

2 Relevant works

In recent years, machine learning has become a tool
used by several research groups to study catalysis, and
in particular, the CO2 reduction reaction. One recent
study used a feedforward artificial neural network to
construct a nonlinear mapping between their feature
vector and CO adsorption energy. The primary fea-
tures were electronic in nature: d-band filling, center,
width, and skewness, as well as local Pauling electroneg-
ativity. This resulted in an improved error (0.1eV)
compared with a two-level interaction model (0.3eV)[3].
This work was then extended by the same group to in-
clude geometric features in search of Cu 100-terminated
bimetallics, aimed at producing C2 species, obtaining
similar error (0.1eV) as the previous model[4]. Zeolite
catalysts have also been investigated for CO2 reduction.
A Bayesian regularized feed-forward neural network was
used to identify quantitative relationships between struc-
tural characteristics and simulated adsorption proper-
ties. Top candidates were identified based on these quan-
titative relationships, with most having a cavity size of
6 angstroms[5]. Machine learning has also been used to

help generate surface Pourbaix diagrams for catalysis[6].
Machine Learning has also been applied to create hybrid
DFT atomic functionals that is properly optimized for
chemisorption calculations[10].

In the Norskov group, Gaussian Process (GP) regres-
sion was used to predict CO binding energy on vari-
ous facets of the Nickel-Gallium bimetallic system. The
study used the coordination of surface atoms as its main
set of features; however, these features do not account
for the electronic structure of elemental constituents. By
introducing a new set of features which include electronic
structure information, we expect to expand the current
model to encompass a wider variety of systems.

3 Data

Data was collected from calculations using the Quan-
tum Espresso DFT code with the Atomic Simulation
Environment (ASE)[13]. The output from DFT con-
tains all atomic structure information, such as atomic
positions and energies. Bulk atomistic structures were
taken from the Materials Project and used to create sur-
face structures[12]. Each surface was then partitioned
into various molecular motifs via Voronoi decomposition,
each representing a unique bonding network of 16 neigh-
boring atoms with a CO molecule. Our current dataset
has 960 examples spanning more than 80 materials sys-
tems.

4 Feature Extraction

One of the main challenges of our project was devis-
ing a way to vectorize atomic structure data from DFT
to construct the dataset. Unlike atomic calculations of
biomolecules, atomic structures of heterogeneous cata-
lysts are periodic and do not have a terminal length.
Thus, we needed to determine a threshold length where
the sampled atoms are sufficient in describing the bond-
ing nature of CO on any atomic surface.

4.1 The Quadtree Model

We hypothesize that the CO binding energy is a function
of the attributes of its neighboring atoms such that:

∆Eads = f(atom1, atom2, ..., atomn)

where each atomi has its own a set of identifying at-
tributes. We devised a feature vector based on a lin-
earized layered quadtree model. A quadtree model is a
tree model where each node has four child nodes. The
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layered tree-model allows us to describe a network of
neighboring atoms with a finite number of vector ele-
ments. We start with the zeroth layer, which represents
the CO adsorbate on the surface. Each surface has, at
most, 4 coordinated metal atoms to CO, so we select the
4 closest atoms to CO as the tree network’s first layer.
We then select four more descending neighbors of the
atoms in the first layer as the second layer. We stop
at 2 ’layers’ because 3rd order neighbors generally have
very weak interactions with the adsorbate. In short, our
feature vector is derived from features from each atom
in each layer.

4.2 Geometric Features

Geometric features were added to describe the spatial in-
formation of the atomic network. These features include
the bond distances between atoms in the first layer and
CO, which helps distinguish different site types (on top,
bridge, 3-fold, 4-fold). In addition to bond distances, we
include the polar coordinates of the 4 neighboring atoms
to gain angular information of those atoms relative to
the adsorbate.

4.3 Electronic Features

Electronic features help describe each motif in terms of
its electron density, a distinction that geometric features
ignore. The electronic features include the element’s
group, quantum angular momentum ’l’, valence orbital
fill factor, and electron population, all taken from DFT
calculations of the material’s bulk structure.

4.4 Dimensionality reduction

Dimensionality reduction was performed manually based
on literature suggestions[7, 8]. We removed atomic radii,
shielding, and Pauling electronegativity features because
they did not provide enough information about electron
interactions involved between elements; DFT data pro-
vide a clearer picture of the changes that occur in elec-
tron interactions between different elements.

After assigning features to each atom, the feature vec-
tor was further reduced by taking means and sums of
appropriate quantities. This allows for the creation of
aggreagated data for each layer. We can then describe
the interaction between the first and second layer more
compactly, to help reduce the risk of overfitting.

In total, each example has 56 features. Table 1 pro-
vides a full description of the resulting feature vector in
our study.

5 Methodology

We made use of three classes of models from the sklearn
Python package[11]: Gaussian Process (GP), kernel-
based methods, and Neural Networks (NN).

5.1 Data Preprocessing

Since some training examples were generated by “strain-
ing” some data points (much like spatial operations on

Table 1: Full Feature Table by Vector Index

I Feature I Feature
1 Atom 1 Element Group 29 ΣAll Electron-states in 1st Layer
2 Atom 1 Polar Angle 30 ΣFilled Electron-states in 1st Layer
3 Atom 1 Azimuth Angle 31 1st Layer S-shell Fill Factor
4 Atom 1 Bond Distance 32 1st Layer P-shell Fill Factor
5 Atom 1 Coordination 33 1st Layer D-shell Fill Factor
6 Atom 1 Quantum Ang. Mom. 34 1st Layer F-shell Fill Factor
7 Atom 2 Element Group 35 % of 1st layer electrons in S-shell
8 Atom 2 Polar Angle 36 % of 1st layer electrons in P-shell
9 Atom 2 Azimuth Angle 37 % of 1st layer electrons in D-shell
10 Atom 2 Bond Distance 38 % of 1st layer electrons in F-shell
11 Atom 2 Coordination 39 Avg. Element Group in 2nd Layer
12 Atom 2 Quantum Ang. Mom. 40 Avg. Bond Distances in 2nd Layer
13 Atom 3 Element Group 41 Avg. Coordination in 2nd Layer
14 Atom 3 Polar Angle 42 Avg. Quant. Ang. Mom. in 2nd Layer
15 Atom 3 Azimuth Angle 43 ΣS-shell Electrons in 2nd Layer
16 Atom 3 Bond Distance 44 ΣP-shell Electrons in 2nd Layer
17 Atom 3 Coordination 45 ΣD-shell Electrons in 2nd Layer
18 Atom 3 Quantum Ang. Mom. 46 ΣF-shell Electrons in 2nd Layer
19 Atom 4 Element Group 47 ΣAll Electron-states in 2nd Layer
20 Atom 4 Polar Angle 48 ΣFilled Electron-states in 2nd Layer
21 Atom 4 Azimuth Angle 49 2nd Layer S-shell Fill Factor
22 Atom 4 Bond Distance 50 2nd Layer P-shell Fill Factor
23 Atom 4 Coordination 51 2nd Layer D-shell Fill Factor
24 Atom 4 Quantum Ang. Mom. 52 2nd Layer F-shell Fill Factor
25 ΣS-shell Electrons in 1st Layer 53 % of 2nd layer electrons in S-shell
26 ΣP-shell Electrons in 1st Layer 54 % of 2nd layer electrons in P-shell
27 ΣD-shell Electrons in 1st Layer 55 % of 2nd layer electrons in D-shell
28 ΣF-shell Electrons in 1st Layer 56 % of 2nd layer electrons in F-shell

images for image recognition problems), we cautiously
split our dataset to ensure that examples in the test
set were independent of those in the training set. We
also normalized the data set prior to fitting using kernel-
based models and the Gaussian Process model. Interest-
ingly, we found that standardizing the data for a neural
network provides a drastic improvement in performance.

5.2 Gaussian Process

We modeled our training set with GP regression, which
is a form of a kernel-based Bayesian regression algo-
rithm.

For predictions, GP generates a prior distribution over
functions f(·) based on some covariance function k(·, ·)
such that

f(·) ∼ GP (0, k(·, ·)) (1)

and attempts to use these functions to fit the sample
data by optimizing these functions with the maximum
log-likelihood equation given below:

L = −1

2
(log |K|+ yT ∗K−1 ∗ y) (2)

For the Gaussian Process, we used the Gaussian Kernel.
The elements of the kernel can be calculated from the
sample data given in the equation below.

k(x, y) = exp(−‖x− y‖
2

2σ2
) (3)

where we can tune parameters in A−1 to adjust for over-
fitting with the Gaussian Kernel. We choose to use GP
regression because it is reasonable to assume that our
dataset comes from a multivariate distribution; the data
contains several adsorbate configurations on several sur-
faces for a few dozen material systems. GP attempts to
predict new data based on the most probable covariance
function from the training data and uses it to predict the
binding energy on a new motif. Furthermore, since GP
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regression is kernel-based, we hypothesize that it can
take advantage of our tree-based data structure. We
used a constant GP regression model; the prior distribu-
tion f(·) has a constant mean while taking the Gaussian
kernel to be the covariance function.

5.3 Support Vector Regression

We used support vector regression, primarily for its abil-
ity to use kernel methods to model non-linear behavior
in the binding energy. We attempt to find the hypothesis
hw,b(x) = wTx + b, where our regularized optimization
problem is

min
w,b

1

2
||w||2 + C

l∑
i=1

(ξi + ξ∗i ),

s.t.

y(i) − wTx(i) − b ≤ ε+ ξi, i = 1, . . . ,m

wTx(i) + b− y(i) ≤ ε+ ξ∗i , i = 1, . . . ,m

ξi, ξ
∗ ≥ 0,

where ε > 0 is fixed, x(i) are the inputs, and y(i) are
the labels for binding energy. We used cross-validation
for our SVR to select appropriate values for C to avoid
underfitting or overfitting. We used a Laplacian Kernel,
which is similar to the Gaussian Kernel but the square
of the norm is removed and the kernel is less sensitive
to changes in the σ parameter. The elements of the
kernel can be calculated from the sample data given in
the equation below.

k(x, y) = exp(−‖x− y‖
σ

)

5.4 Kernel Ridge Regression

Kernel Ridge Regression is the kernelized version of
Ridge Regression where we apply the kernel trick to the
loss function:

J =
1

m

m∑
i=1

(L(

m∑
j=1

αj ∗K(x(i), y(i)), y(i))+

λ

2

∑
i,j

αiαj ∗K(x(i), y(i))

then optimize for α values. We used the same kernel
that we used for SVR in the KRR model.

5.5 k-Neighbor Regression

We used k-Neighbor Regression (k = 2) as a baseline to
test the notion that new motifs should regress based on
”similar” motifs from the training set. Rather than com-
puting with a kernel, new data is simply regressed based
on the Manhattan distance of k neighboring points:

Dis(xa, xb) =

n∑
i=1

|xa,i − xb,i|

where xa and xb are points in our input set.

5.6 Fully Connected Neural Networks

We used the Multi-layer Perceptron as our neural net-
work model for the study. In this algorithm, our fea-
tures are put into linear combination and fed into hid-
den nodes, where they are passed into tanh activation
functions. This process propagates forward through the
network until a linear combination is finally given to the
output layer. In each hidden node, a linear combination
of inputs is passed into a tanh activation function. The
weights are optimized via backpropagation and gradient
descent on the l2 squared-error cost function:

m∑
i=1

(yi − ŷi)2 + λ

k∑
j=1

w2
j ,

where yi is the prediction, ŷi is the label, and wj are the
weights.

5.7 Linear Regression

As another benchmark, we applied a linear regression
model to our dataset. To do so, we solve the normal
equations for linear regression:

θ = (XTX)−1XT y

5.8 Cross Validation

We split our dataset to create separate training and test
data, where 90% is for training and 10% is for testing
purposes. The training set was further split into 25 sam-
ples for cross-validation purposes, using Shuffle-splitting
for kernel-based methods and K-fold for the Neural Net-
work. For Gaussian Processes, we found that the most
appropriate regularization parameter σ for the RBF ker-
nel function was 0.1. For SVR, we found that the most
appropriate cost parameter was C=3. For both Sup-
port Vector Regression and Kernel Ridge Regression,
we found the optimal gamma value was 0.001. For our
neural network approach, we did an extensive hyper-
parameter search for hidden layer dimensions, activation
function, and l2 penalty term, and obtained a network
with two hidden layers of dimensions 29 and 8 for tanh
activation function and λ = 15 l2 penalty term, respec-
tively.

5.9 Error Metric

We used root-mean-squared-error (RMSE) as our test-
ing metric to compare our models with DFT calculated
energies:

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2.

where m is the number of examples, and (yi − ŷi) is the
difference between the predicted CO binding energy and
the CO binding energy calculated from DFT.
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Figure 1: Gaussian Process Parity Plot

Figure 2: Left: SVR Parity Plot. Right: KRR Parity
Plot

6 Results And Discussion

Parity plots reflect the model performance. From both
linear regression and k-neighbor regression, we can see
that the predicted test points were scattered. This helps
confirm that predicting CO binding energy is not as sim-
ple as a linear relation nor is it an entirely local phenom-
ena. From the SVR and KRR parity plots, we can see
the models are seemingly overfit; their training points
are very close to actual values, yet their test points are
slightly scattered. Both the gaussian process and neural
networks exhibited the best test error.

We can compare the RMSE values from the test set
in Table 2 to the RMSE values for chemisorption in Fig-
ure 5. Our models exhibit an average RMSE of 0.4eV.
Given the size of the dataset, this is quite good. The
mBEEF[10] functional, which is a ML-based DFT func-
tional, has an accuracy of 0.2eV. This functional was
trained on a chemisorption dataset that was generated
from quantum physics calculations which give much bet-
ter accuracy than DFT.

Figure 3: Left: Linear Regr. Parity Plot. Right: K-
Neighbor Regr. Parity Plot

Figure 4: Neural Network Parity Plot

6.1 Learning Curve

We can plot the learning curve for every method to qual-
itatively gauge whether the errors for these methods can
be improved with more sample data. We plot the train-
ing error with the cross validation error for each model,
splitting 50 samples from the training set. As shown
in Figure 6, only our linear regression model appears
to have plateau at just around 850 samples. All other
methods have yet to plateau. We may still be able to im-
prove the performance for these models by adding more
data to the data set.

6.2 Feature Importance

We scored the usefulness of each feature by training each
model such that we remove one feature at a time. Fig-
ure 7 allows us to see how removing features affects the
score of the model. As shown, all models weighed some
electronic features in the 2nd layer as important for pre-
dicting CO binding energy. In particular, both SVR
and KRR seem to weigh electronic features more heavily
than geometric features. GP and k-neighbor regression
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Figure 5: DFT Functional Error [10]

Model Train [eV] Test [eV]
Gaussian Proc. 0.178 0.432
Supp. Vec. Regr 0.094 0.495
Kernel Ridge Regr. 0.084 0.496
Neural Networks 0.354 0.371
k Neigh. Regr 0.394 0.690
Linear Regr. 0.607 0.667

Table 2: Errors by Model.

appear to actively use both geometric and electronic fea-
tures. Note that our neural network model did not make
good use of geometric features, which hints at some areas
of improvement in the future.

6.3 Outliers

Another probable cause for any increase in test error
might not be inherent to the models used, but rather
that the features are unable to describe other chemical
phenomenon. Our feature set hinges on the idea of pre-
dicting CO binding energy based on a neighboring atom
network. For instance, if the CO molecule prefers not
to bind to the surface and instead desorbs, our feature
set can only describe the repulsive interaction between
the surface and the CO molecule with arbitrary distance
and no electronic component.

7 Conclusions And Future Work

We have demonstrated promising results, particularly
for our kernel-based methods and neural networks ap-
proach. These results may ultimately be able to reduce
the computational power necessary to screen for CO2

reduction catalysts.
Our highest performing method was the neural net-

work, yielding a test error of .371 eV. This, perhaps,
is due to the ability of deep neural networks to model
higher level abstractions better than our other meth-
ods. Our kernel based methods also performed substan-
tially well. We believe this is primarily due to the ability
of kernels to map our inputs into a higher dimensional

Figure 6: Learning Curves for each model

Figure 7: Feature Scores for each model. Purple: Linear
Regression; Blue: k-Neighbors Regression; Red: SVR;
Green: KRR; Aqua: Neural Networks; Yellow: Gaussian
Process

space and to model non-linearities within the data set.
Our worst performing model was k-neighbor regression,
as it benchmarked a .690 eV error. We believe this is
due to the high-dimensionality nature of our data, the
same reason for why linear regression performed poorly.

There are many routes for future work. For one, we
can try refining our feature set in describing the bonding
nature of adsorbates to the surface. Our current featur-
ization does not describe the effects of very strong or
weak binding catalysts, where many non-trivial effects
may arise. Another route would be to reexamine our
deep learning approach. Namely, with more computing
resources we could try expanding the data set size and
restructure our features to apply more sophisticated ar-
chitectures such as convolutional neural networks, which
have been successful in structure-based high-throughput
drug discovery[9]. We believe convolutional neural net-
works might be more suitable for this problem primarily
due to the spatial dependencies of the geometric fea-
tures, which were not well modeled by the fully con-
nected network.
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