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Abstract

Inspired by CalEnviroScreen, an environmental health
assessment tool used to identify environmentally at-risk
communities in California, we calculate pollution burden
scores at the census tract level for the entire contiguous
United States.  Pollution burden is a composite score
that encompasses 12 environmental (air, water, waste)
indicators. We combine actual pollution burden indicator
data with predicted statistics using machine learning. We
create a novel National (Lower 48) Pollution Burden Map
using ArcGIS.

1. Introduction

California arguably has the most comprehensive
environmental health data collection, which significantly
aids its efforts to identify communities most affected by
a variety of pollution sources, home to residents most
vulnerable to the adverse effects of pollution. The Office
of Environmental Health Hazard Assessment (OEHHA)
has developed an environmental health assessment tool,
called “CalEnviroScreen,” for all census tracts in California.
It significantly aids California’s efforts to identify
communities that can benefit most from clean technology.
While the CalEnviroScreen final score is computed with the
product of the pollution burden score and the vulnerable
population score, we focus on the pollution burden score
(i.e., exposure to pollutants, environmental effects). Our
goal is to develop a pollution burden scoring system at the
census tract level for the entire contiguous U.S.

Motivated by existing evidence suggesting that
underprivileged groups tend to live in more polluted
communities, we use relevant sociodemographic indicators
as predictors for pollution burden indicators whose data are
unavailable for other states. We apply multiple regression
models and choose the one with the least cross-validation

(CV) test error on California data to make predictions for
missing pollution indicator data for other states. Following
the methodology in CalEnviroScreen, we calculate and
map pollution burden scores for census tracts in every
continental US state.

2. Related Works

Many existing works point to the startling fact that
pollution inequality is more severe than income inequality
in the U.S. Socioeconomic and racial/ethnic status has
been frequently linked to exposures to environmental risks,
such as proximity to hazardous waste sites, vehicle traffic,
and polluting industries [1, 8, 16, 2, |4]. Nationally,
inequality for NO, concentration is greater than inequality
for income [3]. These socioeconomically underprivileged
communities are often made more susceptible to air
pollution due to poor access to health care [7]. We leverage
this widely documented correlation between relevant
sociodemographic indicators and pollution outcomes to
make predictions for missing pollution indicator data.

3. Data

Data on pollution burden indicators at the census
tract level of California come from CalEnviroScreen 3.0,
released in September 2016. It comes on a 0-10 scale and
is multiplied by 10 to obtain a scale of 0-100 in our training
dataset. As shown in Figure |1} there are in total, twelve
pollution burden indicators that encompass both exposure
and environmental effects.

For other states, we collected their pollution burden
indicator data at the census block group level from
the Environmental Protection Agency (EPA) and the
Department of Transportation (DOT). We were able to
collect data for all pollution burden indicators to match
those in CalEnviroScreen except for pesticide use, drinking
water contaminants, and solid waste sites and facilities
(highlighted in yellow in Figure [I); this is where we use



machine learning to make predictions for these missing
indicator data. We aggregated census block-level data to
obtain census tract-level data to match the administrative
level at which CalEnviroScreen scores are calculated.
Finally, we calculated the state percentiles for each
indicator.
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Figure 1. Environmental indicators and pollution burden score

As mentioned in related works, given a high correlation
between sociodemographic variables and pollution
outcomes, we collect data on relevant variables, including
poverty, known poverty status, minority, less than high
school education, under 5 years old, over 64 years old,
household linguistic isolation, and population density,
at the census block level from the 2010-2014 American
Community Survey (ACS), a national demographics survey
administered by the U.S. Census Bureau. Specifically, they
are proportion of population who are in households with
household income no more than twice the federal “poverty
level;” proportion of the population whose poverty (or lack
thereof) is known; proportion of individuals whose race
status is something other than non-Hispanic white alone;
proportion of the population that are over 25 years old with
less than high school degree; percent of people who are
under 5 years old; percent of people who are over the age
of 64; the proportion of households where all members
speak English less than “very well;” and population size
divided by land area. As with pollution burden indicator
data, we aggregated these census block group-level data
to obtain census tract-level data. We then calculated
state-level percentiles for these indicators except known
poverty status, which is in percentage. Known poverty
status is an indicator of the coverage of the poverty survey,
S0 it is more appropriate to use its percentage rather than
percentile form.

4. Methods

Here we aim to predict percentile values for indicators
with unavailable data in other states. The sociodemographic
indicators detailed in Section 3 represent our predictors. We
compare four different models with the traditional, baseline

OLS model that incorporates all features: ridge, lasso, best
subset selection model, and best subset selection model
with interaction terms between selected features. Figure
demonstrates our workflow. Individual steps are detailed
below.
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Figure 2. Environmental indicators and pollution burden score

4.1. Create training and test samples for California
data

As our initial step, we split our California dataset in half
randomly to create the training and the test samples for
calculation of CV error for different models in step 4.3.

4.2, Train algorithms

We train five different algorithms on the California
training sample: full-feature OLS, ridge, lasso, best
subset-selected features OLS, and best subset-selected
features with interaction terms OLS. In the full-feature OLS
model, the goal is to minimize the cost function:
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Similar to OLS, ridge regression estimates coefficients
by minimizing a slightly different quantity. The 3% values
minimize:
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where A > 0 is a tuning parameter that is determined
separately. It trades off two different criteria [5]. On the
one hand, the first term seeks to estimate coefficients that
fit the data well by making the cost small, just like in OLS.
On the other hand, the second term, A>_ j ﬁz, is called the
“shrinkage penalty;” it is small when the coefficients are
close to zero, thereby shrinking the coefficient estimates
towards zero. The tuning parameter, A, controls the relative
impact of these two terms on the coefficient estimates.
Unlike OLS, which produces only one set of coefficient
estimates, ridge produces a distinctive set of coefficients,



Af, for each value of A\. Choosing the right value for
A is critical. Ridge regression’s advantage over OLS is
rooted in the bias-variance trade-off. The increase in A is
accompanied by decreased variance and increased bias.

By contrast, lasso may penalize and force some of the
coefficient estimates to be exactly equal to zero when the
tuning parameter \ is sufficiently large. Lasso coefficients,
3 &, minimize:
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It differs from ridge regression penalty in that 632 is replaced
by |5;] [5l]. As with ridge regression, choosing a good value
for A is crucial. In both ridge and lasso regressions, we
choose the best A values using the glmnet R package.

In best subset selection, we fit a separate least squares
regression for each possible combination of the eight
predictors. To start off, we have exactly one predictor in the
model, which gives us eight models. Then we have exactly
two predictors in the model, which gives us w =28
models. And so on so forth. There are 28 = 256 models in
total. We then look at all the resulting models to identify the
best one. To state the algorithm more formally, three major
steps are involved [J]]:

1. Let My denote the null model, which contains no
predictors. This model simply predicts the sample
mean for each observation.

2. Fork=1,2,...,p:

(a) Fit all (Z) models that contain exactly k

predictors.

(b) Pick the best among these (i) models, and call it
Mj. Here best is defined as having the smallest
J(0), or equivalently largest R2.

3. Select a single best model from among My, . . . , M,
using cross validated prediction error, Cp (AIC), BIC,
or adjusted R?.

Step 2 is reducing the problem from choosing 256 models
to choosing 8+1=9 models. To select a single best model
among these 9 models, we want to avoid overfitting by using
cross-validated prediction errors, adjusted R2, Cp, and BIC.

The fifth model we employ simply involves the selected
features from best subset selection, plus their interaction
terms.

4.3. Generate cross-validation error

We apply the five algorithms on California test sample
to generate CV errors for three pollution burden indicators:
pesticide use, drinking water contaminants, and solid waste
sites and facilities.
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4.4. Choose the most appropriate model

Ridge regression model generates the lowest CV error
for drinking water contaminants as well as for solid waste
sites and facilities. In the case of pesticide use, the
difference in CV errors for ridge and lasso is less than
one, which is almost negligible. Given that California is
more heterogenous in terms of demographics than most
other states in the United States, we choose ridge over lasso
because the former places less weight on minority than the
latter. Therefore, for predicting all three pollution burden
indicators, we choose the ridge regression model.

4.5. Predict and adjust percentile values for
indicators with unavailable data

Lastly, we predict percentile values for the three
pollution burden indicators with missing data using the
ridge algorithm we trained in the previous step. Maintaining
the relative percentile ranking among census tracts in any
given state, we adjust the percentile values so that they are
evenly distributed between 0 and 100.

5. Results

We create a national (lower 48) pollution burden map
using the platform provided by ArcGIS Online. We
map the pollution burden status and sociodemographic
characteristics for all census tracts in states with fewer
than 1,500 census tracts. Due to data upload capacity
of the platform, for states with more than 1,500 census
tracts (i.e., AZ, CA, FL, GA, IL, IN, MI, NJ, NY, NC,
OH, PA, TX, VA), our map highlights areas with predicted
pollution burden scores higher than one standard deviation
above the mean (i.e., 15.9 % most polluted tracts). We
enable the “Layers” functionality for users to choose which
state to display or hide. Access our interactive map here:
http://arcg.is/2gUtEIu. Below, we showcase a
few examples of our map findings.

5.1. Seattle Metropolitan Area, Washington

As shown in Figure [3] pollution burden in the state
of Washington is mostly concentrated in the Seattle
Metropolitan Area and, to a lesser extent, in Spokane.

Zooming in, we see in Figure [ that Seattle has the most
polluted census tracts in the Metropolitan Area. Zooming
in further, we can see that census tract 53033009300 has
a pollution burden score as high as 93.30. In this census
tract, the percentage of racial minorities, people over 25
with less than high school education, and linguistically
isolated households are also among the highest in the state
of Washington.
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Figure 3. Pollution Burden in the State of Washington
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Figure 4. Pollution Burden in the Seattle Metropolitan Area
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Figure 5. High Pollution Burden Tract in Seattle

5.2. Dallas, Texas

In the state of Texas, Dallas and Houston are among the
most polluted Metropolitan Areas (Figure [6). Unlike its
neighbors, Austin has a comparably lower pollution burden
level and none of its census tracts are among the 15.9 %
most polluted ones in Texas.
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Figure 6. Pollution Burden in the State of Texas

Zooming in at Dallas and clicking on one of the hot
spots, we can see that census tract 48113020300 has a
pollution burden score of 88.52 (Figure [7). This census
tract is also home to widely low income (at 96.78th state
percentile) and less educated (78.02th percentile) minorities
(88.20th percentile).
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Figure 7. High Pollution Burden Tract in Dallas

Our interactive map also includes a search box where
users can input their address or zip code to view the
pollution burden status and sociodemographic composition
of their neighborhood.

6. Future Steps

We want to identify ways to validate predicted indicator
percentile values. The possibility of this depends on
data availability and accessibility.  Furthermore, there
are a few census tracts with partially missing data,
so we want to develop a multiple imputation model
for missing data in these census tracts.  While we
recognize that the validity of our approach hinges upon
the assumption that California and other states share
similar relationships between sociodemographic indicators
and pollution outcomes, which may not be accurate in
reality, we hope that our mapping tool will aid clean
technology companies and policy makers in identifying
environmentally at-risk communities and serve as the
first step for state environmental authorities and relevant



organizations to start collecting (if that applies) and
disclosing critical environmental data to the public.
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