
Classification of Artist Genre through Supervised
Learning

 Richard Ridley and Mitchell Dumovic

Abstract – The goal of this paper is to classify the genre of
an artist given a set of quantitative measures for each of
their associated songs. We utilized supervised learning in
this task, and relied upon a dataset composed of
quantitative song data that Spotify provides for the
majority of the songs that they stream. We collected data
for 14 different features for over 35 million songs, which
spanned over 100 thousand artists and over 12 hundred
genres. Before applying classification methods to this
data, we collapsed our set of genres by a factor of ten,
and collapsed our song data by applied different
statistical measures to reduce to a set of features for
every artist. Then, we applied Stochastic Gradient
Descent, Gaussian SVM, and Nearest-Neighbors as
classifiers, and results were somewhat successful.

INTRODUCTION

Genre classification is immensely important to the
field of music. Accurate genre classification can
aid in the effectiveness of music recommendation
engines, help unearth similarities between
different music genres, and reduce the need for the
hand labeling of genres in streaming services.
This project focuses on attempting to accurately
predict the genres that an artist belongs to given
information about the songs that they have
produced. The input to our algorithm is a dataset
that we pulled from Spotify containing
information about artists (with their associated list
of classified genres) and tracks (with their
associated song features). We then use various
classification algorithms (KNN, SGD, SVM) to
output predicted genre classifications for artists.

RELATED WORK

Most related works we found dealt with song
classification instead of artist classification, but
we still were able to get valuable ideas and
information from various sources.

For feature extraction, [2] and [4] used “Spectral
Centroid, Spectral Roll-Off, Spectral Flux, Time
Domain Zero Crossings, Pitch Distribution and 13

different Mel-Frequency Cepstral Coefficients of
individual tracks” whereas [5] and [1] deal with
extracted features related to timbre, melody,
rhythm, and pitch. In general, most papers we
found pulled features from the raw song
waveform, so we knew that we would have to
extract features derived from these waveforms as
well. However, we found that some of these
approaches like [4], [5], and [6] suffered from
relatively small datasets or limited numbers of
genre labelings.

In terms of models, the model that performed best
in [4] was k-nearest neighbors applied to the
multi-label data. [5] suggests using support vector
machines as well as attempting one versus one and
one versus all classification algorithms for the
multi-label data. [6] suggests the use of an
ensemble technique for multi-label classification,
another classification algorithm which involves
training multiple classifiers for the data and
combining the results of the multiple classifiers
into one single classification. In general, it became
quickly apparent from these related works that we
would need to use one of the multi-label methods
for classifying our data, and would really benefit
from attempting algorithms involving the training
of multiple classifiers, as these seemed to perform
best over the similar papers that we looked at.

DATASET

To collect our data, we relied upon a publically
available Spotify API that allowed us to capture
information about specific songs, artists, and their
albums. To collect data about the songs of a wide
range of different artists, we first needed to
assemble a set of artists for which we could
collected song data for. To do so, we first hand-
picked a “root” set of 50 different artists that we
believed to be representatives of a wide variety of

different genre clusters. After doing so, we used a
functionality that would allow us to find all of the
artists related to a specific artist. Through the use
of recursive formulation, we assembled a list of
over 100,000 artists that would form the basis for
our training data. Each of these artists had labeled
genres, which indicated to which genres they were
a part of. Then, for each of these artists, we
collected a set of all of their associated songs. For
each of these songs, we were then able to collect a
variety of different quantitative measures over
different qualitative aspects of our songs. The
features that we collected are below.

AVAILABLE SONG FEATURES
Feature Description

acousticness A confidence measure of how acoustic
the track is.

danceability A metric assessing the degree to which
the track is danceable.

energy Represents a perceptual measure of the
songs intensity and activity.

instrumentallness A confidence measure dictating
whether the track contains vocals.

key An integer indicating the key the track
is in.

liveness A measure that details the likelihood
that the track was performed live.

loudness The overall loudness of the track as
measure in decibels.

speechiness The confidence in the appearance of
spoken words in a track.

tempo The overall estimated tempo of a track
in beats per minute.

FEATURES

Because songs do not have a genre labeling, we
needed to build a feature set for every artist that
accurately represented the set of songs associated
with them. And since artists could have a highly
variable number of songs, we needed to develop a
strategy that would allow us to have a static
number of features defined over a variable number
of input songs. To do so, we calculated different
statistical measures over each of our individual
song features for each of our artists. We decided to
use mean, median, variance, and skew.

This succeeded in reducing the dimensionality of
our data set, and also reduced our training set to
about 100,000 examples, consisting of
agglomerated song data for every artist that we
had collected. However, this did not come without
a cost, as the use of these summary statistics
reduced the precision of the data that we had
collected by a significant degree. Nonetheless,
artists of different genres generally differed
significantly in their values for these statistics, as
the below example illustrates.

GENRE COLLAPSING

In our original dataset, Spotify classified songs
with 1241 unique genres. As some of our
algorithms involve training classifiers for each
genre labeling, it was necessary to try to reduce
the number of genre labelings as much as possible.
To do this, we relied heavily on association rule
algorithms in order to find labelings that appeared
frequently together. These algorithms worked
roughly as follows:

First, define support for some set of genres G -
𝑠𝑢𝑝𝑝(𝐺) - as the number of times that an artist is
classified with all the genres in the set G. Our
algorithm started by removing genre labelings for
single genre set below a certain support threshold
over the entire dataset. Next, define confidence
and lift for some pair of genres G1 and G2 as
follows:

𝑐𝑜𝑛𝑓 𝐺! → 𝐺! =
𝑠𝑢𝑝𝑝 𝐺! ∪ 𝐺!
𝑠𝑢𝑝𝑝 𝐺!

𝑙𝑖𝑓𝑡 𝐺! → 𝐺! =
𝑠𝑢𝑝𝑝 𝐺! ∪ 𝐺!

𝑠𝑢𝑝𝑝 𝐺! ∗ 𝑠𝑢𝑝𝑝(𝐺!)

A confidence value of 1 indicates that

every time that G1 appears it appears with G2,

meaning that it is a good candidate for genre
collapsing. For example, in our analysis we found
that the genre “college a capella” appeared
together with the genre “a capella” the exact same
number of times the genre “college a capella”
appeared by itself. This indicates a confidence
value of 1, and resulted in us collapsing “college a
capella” together with “a capella.”

In general, our algorithm worked by iteratively
collapsing the two genres with the highest
confidence and lift values in our dataset,
terminating when the confidence and lift values
fell below a certain threshold. Finally, we scanned
over the entire dataset once more and removed any
more collapsed genres that had a support value
lower than a second, higher threshold. This
resulted in our final collapsed list of 95 unique
genres. This also had the added effect of reducing
the number of labelings an artist was classified as
on average, further simplifying our dataset. Before
this genre collapsing, each artist was classified
with an average of approximately 5.27 different
genre labelings. After the collapse, this number
was reduced to an average of approximately 1.88
different labelings.

CLASSIFICATION MODELS

To classify the genres for different artists, we used
the supervised learning approaches of Stochastic
Gradient Descent, K-nearest neighbors, and
Support Vector Machines. In configuring
Stochastic Gradient Descent and Support Vector

machines in this multi-label classification
problem, we decided to try using both “one versus
one” and “one versus all” approaches.

A “one versus all” approach in the context of
multi-label classification problem involves the
training of a binary classifier for each of the
labels. This classifier discriminates between its
associated label and all of the other labels in the
training set. In our case, when using this approach,
we trained 95 different classifiers which would tell
us whether an artist either belonged to or did not
belong to a specific genre, and labeled that artist
with that genre if the classifier outputted that the
artist does belong to that genre.

We also employed a “one versus one”
classification scheme when using SVM. “One
versus one” in the context of multi-label
classification involves the training of a classifier
for every pair of labels, and learns to distinguish
which of the two labels an example is more likely
to belong to. After training these classifiers, an
example is assigned a label according to the class
that got the highest number of positive predictions.
Thus, in our case, we trained a classifier for every
pair of musical genres, and when evaluating what
genre that an artist belonged to, we returned the
genre that was predicted most often in the 95 pairs
in which it appeared. So as to ensure that artists
could attain multiple genre labelings, we assigned
additional genre labelings if the number of times
that these individual genres were predicted was
close to the number of times the mostly commonly
predicted genre was predicted.

Both “one versus one” and “one versus all” can be
considered valid, but it is generally the case that
“one versus one” multi-label classification takes
significantly more processing time and requires
more data than does “one versus all” approaches.

Multi-label K-Nearest Neighbors Model

When attempting to classify a testing example x,
let A be a sorted list containing the Euclidean
distances of the training examples to the test point.
Let Ai, y denote the label of the training example

that is the i-th closest in terms of Euclidean
distance to the test point. The single label k-NN
algorithm uses the following to output select the
output label:

𝑡𝑒𝑠𝑡𝐿𝑎𝑏𝑒𝑙 = 𝑎𝑟𝑔!max (1[𝐴 !,! = 𝑘]
!

!!!

)

In the multi-label algorithm, the neighbors are first
found, then a maximum a posteriori (MAP)
principle is utilized to determine the test label[7].
Since we operated in a space with so many
possible labelings, we set k to be equal to 10.

SVM Model

The SVM model is a model that seeks to minimize
an objective function by creating a hyperplane that
is used to separate two classes of data inputs and
maximize the separation between both sets of
points and the hyperplane. We utilized a soft
margin with a hinge loss function, such that if a
data point is classified on the wrong side of the
hyperplane, its Euclidean distance from the
hyperplane is added to the objective function.

min (max 0, 1− 𝑦! 𝑤 ∙ 𝑥! − 𝑏
!

!!!

+ 𝜆 𝑤 !

The parameter λ determines the tradeoff between
increasing the margin-size and ensuring that data
points lie on the correct side of the margin.
A point x is classified as having label -1 if

𝑤 ∙ 𝑥 − 𝑏 = 1
and having label 1 if

𝑤 ∙ 𝑥 − 𝑏 = −1
where b denotes the size of the margin chosen to
separate the two classes of data points from the
separating hyperplane.

Stochastic Gradient Descent

Stochastic gradient descent is a machine learning
approach that can be used to quickly learn a
classifier that can distinguish between two classes
of data points. It works by updating its
classification model, which is represented by a
weight vector, over every data point that it

observes, and suspending its iteration after a
convergence to a local minimum, or after some
number of passes through its provided training
data. The update rule is below.

𝑤 ← 𝑤 − η α∇!R(w)+ ∇!𝐿(𝑤𝑥! ,𝑦!)
The function R is a function chosen is called the
regularization term, and acts to minimize the size
of the weight vector w. We used a reward function
equal to the L2 norm of the weight vector.
The function L is called the loss function, and
provides a measure of the difference between an
examples classification and its actual class. We
used a logistic regression lost function.

𝐿!"# 𝑤𝑥,𝑦 = log (1+ exp −𝑦 ∙ 𝑤!𝑥)
The learning rate, η, scales how quickly the
classifier “learns”, or is updated. We used an
annealing learned rate, meaning that that the
learning rate decreased with the number of
iterations, thus ensuring that our classifier
converged quickly.

RESULTS

In the end we trained using a training set
consisting of 21,838 artists and a test set of 2,426
artists. Our results from our different approaches
in the confusion matrix form are below. Since,
artists can have multiple genres, the term 𝑦!"#$
denotes whether a specific genre was predicted for
a specific artist. Similarly 𝑦!"# denotes the
presence of specific genre within an artist’s
classifications.

 Test Error
K-nearest Neighbors 𝑦!"#$ = 1 𝑦!"#$ = 0

𝑦!"# = 1 .023 .977

𝑦!"# = 0 .032 .968

 Train Error Test Error

SGD 𝑦!"#$ = 1 𝑦!"#$ = 0 𝑦!"#$ = 1 𝑦!"#$ = 0
𝑦!"# = 1 .097 .903 .067 .933

𝑦!"# = 0 .020 .980 .031 .969

 Train Error Test Error

SVM 𝑦!"#$ = 1 𝑦!"#$ = 0 𝑦!"#$ = 1 𝑦!"#$ = 0
𝑦!"# = 1 0.162 0.838 .115 .885

𝑦!"# = 0 0.026 0.974 .028 .972

As expected our SVM approach performed the
best. However, in general, we were disappointed
with our results. Our hit-rate was much smaller
than we originally expected. However, this was in
large part due to the high dimensionality of our
data: with 95 possible genre labelings, a hit-rate of
11.5% is far better than randomly choosing
genres. Additionally, we found that we had a
better hit rate on some genres than others: our
algorithm in general had much more hits on niche
genres like classical, metal, and deep electronic
music than more generic genres like rock. Below
are confusion matrices for the collapsed genres
roughly corresponding to the classical and heavy
metal music genres:

 Test Error

Classical 𝑦!"#$ = 1 𝑦!"#$ = 0
𝑦!"# = 1 .512 .488

𝑦!"# = 0 .017 .983

 Test Error

Heavy Metal 𝑦!"#$ = 1 𝑦!"#$ = 0
𝑦!"# = 1 .452 .548

𝑦!"# = 0 .021 .979

As it was clear that our feature set was effective in
differentiating clearly unique genres, we decided
to train a classifier on a reduced training set
containing only artists having the genres of
classical, heavy metal, deep electronic, or country.
We constructed a similar testing set, and ended up
with a training set of 1686 examples, and a testing
set of 484 examples. We utilized a one versus one
SVM with the same hyper parameters as before.
Its confusion matrix is below.

 Test Error
Reduced Data Set 𝑦!"#$ = 1 𝑦!"#$ = 0

𝑦!"# = 1 .678 .322

𝑦!"# = 0 .125 .875

As expected, it performed very well relative to the
classifier trained and tested on our whole data set.
Such a result was heartening, and seemed to

display that the features we collected could be
relevant in helping to classify the genres of artists.

CONCLUSION

Our best performing algorithm was SVM using a
one-versus-one scheme, followed by SGD using a
one-versus-all scheme, followed by multi-label k-
nearest neighbors. In general, however, we were a
bit disappointed with the hit rate of our results.
The two main reasons we believe that our results
over our entire training set were poorer than
anticipated are due to the high dimensionality of
our data and our base features used. The need to
use an algorithm to collapse genres together
distorted our original data, and the 95 genres we
were left with were still far too many to train an
effective classifier. Additionally, while the Spotify
song features may be useful for recommendation
purposes, it is likely that by aggregating them
using different statistical measures we lost a lot of
the information that makes genres unique.

NEXT STEPS

If we were to work improve our results, we would
definitely start by improving the quality of our
training set. This would involve reinventing our
feature selection and extraction algorithms as well
as our genre collapsing algorithms so as to both
reduce the dimensionality of our problem and
provide the best possible features for prediction.
Additionally, we may also look at alternative
methods at classification, and perhaps first build
classifiers for the genre of individual songs, which
could be used to classify artists. Such a scheme
would allow us to operate directly on all of the
data that we collected, rather than operating on
summary statistics and measures of our data.

REFERENCES
[1] N. Scaringella, G. Zoia and D. Mlynek, "Automatic
genre classification of music content: a survey," in IEEE
Signal Processing Magazine, vol. 23, no. 2, pp. 133-141,
March 2006.

[2] McKinney, Martin F., and Jeroen Breebaart. "Features
for Audio and Music Classification." Features for Audio and
Music Classification. Johns Hopkins University, n.d. Web.
15 Dec. 2016.

[3] Prasanna, K., and M. Seetha. "ASSOCIATION RULE
MINING ALGORITHMS FOR HIGH DIMENSIONAL
DATA – A REVIEW." International Journal of Advances in
Engineering & Technology (2012): n. pag. Web.

[4] Silva, Vitor Da, and Ana T. Winck. "Multi-Label
Classification of Music into Genres." Applied Data
Mining (2013): 181-203. Web.

[5] Wang, Shu. "Musical Genre Categorization Using
Support Vector Machines". N.p., 2016. Web. 12 Dec. 2016.

[6] Sanden, Chris, and John Z. Zhang. "Enhancing Multi-
label Music Genre Classification through Ensemble
Techniques." Proceedings of the 34th International

[7] Zhang, M.L.; Zhou, Z.H. (2007). "ML-KNN: A lazy
learning approach to multi-label learning". Pattern
Recognition. 40 (7): 2038–2048.

