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Abstract – The goal of this paper is to classify the genre of 
an artist given a set of quantitative measures for each of 
their associated songs. We utilized supervised learning in 
this task, and relied upon a dataset composed of 
quantitative song data that Spotify provides for the 
majority of the songs that they stream. We collected data 
for 14 different features for over 35 million songs, which 
spanned over 100 thousand artists and over 12 hundred 
genres. Before applying classification methods to this 
data, we collapsed our set of genres by a factor of ten, 
and collapsed our song data by applied different 
statistical measures to reduce to a set of features for 
every artist. Then, we applied Stochastic Gradient 
Descent, Gaussian SVM, and Nearest-Neighbors as 
classifiers, and results were somewhat successful.  

INTRODUCTION 

Genre classification is immensely important to the 
field of music. Accurate genre classification can 
aid in the effectiveness of music recommendation 
engines, help unearth similarities between 
different music genres, and reduce the need for the 
hand labeling of genres in streaming services.  
This project focuses on attempting to accurately 
predict the genres that an artist belongs to given 
information about the songs that they have 
produced. The input to our algorithm is a dataset 
that we pulled from Spotify containing 
information about artists (with their associated list 
of classified genres) and tracks (with their 
associated song features). We then use various 
classification algorithms (KNN, SGD, SVM) to 
output predicted genre classifications for artists.  

RELATED WORK 

Most related works we found dealt with song 
classification instead of artist classification, but 
we still were able to get valuable ideas and 
information from various sources.  
 
For feature extraction, [2] and [4] used “Spectral 
Centroid, Spectral Roll-Off, Spectral Flux, Time 
Domain Zero Crossings, Pitch Distribution and 13 

different Mel-Frequency Cepstral Coefficients of 
individual tracks” whereas [5] and [1] deal with 
extracted features related to timbre, melody, 
rhythm, and pitch. In general, most papers we 
found pulled features from the raw song 
waveform, so we knew that we would have to 
extract features derived from these waveforms as 
well. However, we found that some of these 
approaches like [4], [5], and [6] suffered from 
relatively small datasets or limited numbers of 
genre labelings.  
 
In terms of models, the model that performed best 
in [4] was k-nearest neighbors applied to the 
multi-label data. [5] suggests using support vector 
machines as well as attempting one versus one and 
one versus all classification algorithms for the 
multi-label data. [6] suggests the use of an 
ensemble technique for multi-label classification, 
another classification algorithm which involves 
training multiple classifiers for the data and 
combining the results of the multiple classifiers 
into one single classification. In general, it became 
quickly apparent from these related works that we 
would need to use one of the multi-label methods 
for classifying our data, and would really benefit 
from attempting algorithms involving the training 
of multiple classifiers, as these seemed to perform 
best over the similar papers that we looked at.  

DATASET 

To collect our data, we relied upon a publically 
available Spotify API that allowed us to capture 
information about specific songs, artists, and their 
albums. To collect data about the songs of a wide 
range of different artists, we first needed to 
assemble a set of artists for which we could 
collected song data for. To do so, we first hand-
picked a “root” set of 50 different artists that we 
believed to be representatives of a wide variety of 



different genre clusters. After doing so, we used a 
functionality that would allow us to find all of the 
artists related to a specific artist. Through the use 
of recursive formulation, we assembled a list of 
over 100,000 artists that would form the basis for 
our training data. Each of these artists had labeled 
genres, which indicated to which genres they were 
a part of. Then, for each of these artists, we 
collected a set of all of their associated songs. For 
each of these songs, we were then able to collect a 
variety of different quantitative measures over 
different qualitative aspects of our songs. The 
features that we collected are below. 

AVAILABLE SONG FEATURES 
Feature Description 

acousticness A confidence measure of how acoustic 
the track is. 

danceability A metric assessing the degree to which 
the track is danceable.  

energy Represents a perceptual measure of the 
songs intensity and activity. 

instrumentallness A confidence measure dictating 
whether the track contains vocals. 

key An integer indicating the key the track 
is in.  

liveness A measure that details the likelihood 
that the track was performed live. 

loudness The overall loudness of the track as 
measure in decibels. 

speechiness The confidence in the appearance of 
spoken words in a track.  

tempo The overall estimated tempo of a track 
in beats per minute. 

 

FEATURES 

Because songs do not have a genre labeling, we 
needed to build a feature set for every artist that 
accurately represented the set of songs associated 
with them. And since artists could have a highly 
variable number of songs, we needed to develop a 
strategy that would allow us to have a static 
number of features defined over a variable number 
of input songs. To do so, we calculated different 
statistical measures over each of our individual 
song features for each of our artists. We decided to 
use mean, median, variance, and skew.  
 

This succeeded in reducing the dimensionality of 
our data set, and also reduced our training set to 
about 100,000 examples, consisting of 
agglomerated song data for every artist that we 
had collected. However, this did not come without 
a cost, as the use of these summary statistics 
reduced the precision of the data that we had 
collected by a significant degree. Nonetheless, 
artists of different genres generally differed 
significantly in their values for these statistics, as 
the below example illustrates. 

 
GENRE COLLAPSING 

In our original dataset, Spotify classified songs 
with 1241 unique genres. As some of our 
algorithms involve training classifiers for each 
genre labeling, it was necessary to try to reduce 
the number of genre labelings as much as possible. 
To do this, we relied heavily on association rule 
algorithms in order to find labelings that appeared 
frequently together. These algorithms worked 
roughly as follows: 
 
First, define support for some set of genres G -  
𝑠𝑢𝑝𝑝(𝐺) - as the number of times that an artist is 
classified with all the genres in the set G. Our 
algorithm started by removing genre labelings for 
single genre set below a certain support threshold 
over the entire dataset. Next, define confidence 
and lift for some pair of genres G1 and G2 as 
follows: 

𝑐𝑜𝑛𝑓 𝐺! → 𝐺! =  
𝑠𝑢𝑝𝑝 𝐺! ∪ 𝐺!
𝑠𝑢𝑝𝑝 𝐺!

 

𝑙𝑖𝑓𝑡 𝐺! → 𝐺! =  
𝑠𝑢𝑝𝑝 𝐺! ∪ 𝐺!

𝑠𝑢𝑝𝑝 𝐺! ∗ 𝑠𝑢𝑝𝑝(𝐺!)
 

 
A confidence value of 1 indicates that 

every time that G1 appears it appears with G2, 



meaning that it is a good candidate for genre 
collapsing. For example, in our analysis we found 
that the genre “college a capella” appeared 
together with the genre “a capella” the exact same 
number of times the genre “college a capella” 
appeared by itself. This indicates a confidence 
value of 1, and resulted in us collapsing “college a 
capella” together with “a capella.” 
 
In general, our algorithm worked by iteratively 
collapsing the two genres with the highest 
confidence and lift values in our dataset, 
terminating when the confidence and lift values 
fell below a certain threshold. Finally, we scanned 
over the entire dataset once more and removed any 
more collapsed genres that had a support value 
lower than a second, higher threshold. This 
resulted in our final collapsed list of 95 unique 
genres. This also had the added effect of reducing 
the number of labelings an artist was classified as 
on average, further simplifying our dataset. Before 
this genre collapsing, each artist was classified 
with an average of approximately 5.27 different 
genre labelings. After the collapse, this number 
was reduced to an average of approximately 1.88 
different labelings. 

 

 
CLASSIFICATION MODELS 

To classify the genres for different artists, we used 
the supervised learning approaches of Stochastic 
Gradient Descent, K-nearest neighbors, and 
Support Vector Machines. In configuring 
Stochastic Gradient Descent and Support Vector 

machines in this multi-label classification 
problem, we decided to try using both “one versus 
one” and “one versus all” approaches.  
 
A “one versus all” approach in the context of 
multi-label classification problem involves the 
training of a binary classifier for each of the 
labels. This classifier discriminates between its 
associated label and all of the other labels in the 
training set. In our case, when using this approach, 
we trained 95 different classifiers which would tell 
us whether an artist either belonged to or did not 
belong to a specific genre, and labeled that artist 
with that genre if the classifier outputted that the 
artist does belong to that genre.   
 
We also employed a “one versus one” 
classification scheme when using SVM. “One 
versus one” in the context of multi-label 
classification involves the training of a classifier 
for every pair of labels, and learns to distinguish 
which of the two labels an example is more likely 
to belong to. After training these classifiers, an 
example is assigned a label according to the class 
that got the highest number of positive predictions. 
Thus, in our case, we trained a classifier for every 
pair of musical genres, and when evaluating what 
genre that an artist belonged to, we returned the 
genre that was predicted most often in the 95 pairs 
in which it appeared. So as to ensure that artists 
could attain multiple genre labelings, we assigned 
additional genre labelings if the number of times 
that these individual genres were predicted was 
close to the number of times the mostly commonly 
predicted genre was predicted.  
 
Both “one versus one” and “one versus all” can be 
considered valid, but it is generally the case that 
“one versus one” multi-label classification takes 
significantly more processing time and requires 
more data than does “one versus all” approaches. 
 
Multi-label K-Nearest Neighbors Model 
 
When attempting to classify a testing example x, 
let A be a sorted list containing the Euclidean 
distances of the training examples to the test point. 
Let Ai, y denote the label of the training example 



that is the i-th closest in terms of Euclidean 
distance to the test point. The single label k-NN 
algorithm uses the following to output select the 
output label: 
 

𝑡𝑒𝑠𝑡𝐿𝑎𝑏𝑒𝑙 =  𝑎𝑟𝑔!max ( 1[𝐴 !,! = 𝑘]
!

!!!

) 

 
In the multi-label algorithm, the neighbors are first 
found, then a maximum a posteriori (MAP) 
principle is utilized to determine the test label[7]. 
Since we operated in a space with so many 
possible labelings, we set k to be equal to 10. 
 
SVM Model 
 
The SVM model is a model that seeks to minimize 
an objective function by creating a hyperplane that 
is used to separate two classes of data inputs and 
maximize the separation between both sets of 
points and the hyperplane. We utilized a soft 
margin with a hinge loss function, such that if a 
data point is classified on the wrong side of the 
hyperplane, its Euclidean distance from the 
hyperplane is added to the objective function.  

min ( max 0, 1− 𝑦! 𝑤 ∙ 𝑥! − 𝑏
!

!!!

+ 𝜆 𝑤 ! 

The parameter λ determines the tradeoff between 
increasing the margin-size and ensuring that data 
points lie on the correct side of the margin. 
A point x is classified as having label -1 if  

𝑤 ∙ 𝑥 − 𝑏 = 1 
and having label 1 if  

𝑤 ∙ 𝑥 − 𝑏 =  −1 
where b denotes the size of the margin chosen to 
separate the two classes of data points from the 
separating hyperplane. 
 
Stochastic Gradient Descent 
 
Stochastic gradient descent is a machine learning 
approach that can be used to quickly learn a 
classifier that can distinguish between two classes 
of data points. It works by updating its 
classification model, which is represented by a 
weight vector, over every data point that it 

observes, and suspending its iteration after a 
convergence to a local minimum, or after some 
number of passes through its provided training 
data. The update rule is below. 

𝑤 ← 𝑤 − η α∇!R(w)+ ∇!𝐿(𝑤𝑥! ,𝑦!)  
The function R is a function chosen is called the 
regularization term, and acts to minimize the size 
of the weight vector w. We used a reward function 
equal to the L2 norm of the weight vector.  
The function L is called the loss function, and 
provides a measure of the difference between an 
examples classification and its actual class. We 
used a logistic regression lost function. 

𝐿!"# 𝑤𝑥,𝑦 = log (1+ exp −𝑦 ∙ 𝑤!𝑥 ) 
The learning rate, η, scales how quickly the 
classifier “learns”, or is updated. We used an 
annealing learned rate, meaning that that the 
learning rate decreased with the number of 
iterations, thus ensuring that our classifier 
converged quickly. 

RESULTS 

In the end we trained using a training set 
consisting of 21,838 artists and a test set of 2,426 
artists.  Our results from our different approaches 
in the confusion matrix form are below. Since, 
artists can have multiple genres, the term 𝑦!"#$ 
denotes whether a specific genre was predicted for 
a specific artist. Similarly 𝑦!"# denotes the 
presence of specific genre within an artist’s 
classifications. 
 
 Test Error 
K-nearest Neighbors 𝑦!"#$ = 1 𝑦!"#$ = 0 

𝑦!"# = 1 .023 .977 

𝑦!"# = 0 .032 .968 

 
 Train Error Test Error 

SGD 𝑦!"#$ = 1 𝑦!"#$ = 0 𝑦!"#$ = 1 𝑦!"#$ = 0 
𝑦!"# = 1 .097 .903 .067 .933 

𝑦!"# = 0 .020 .980 .031 .969 

 
 Train Error Test Error 

SVM 𝑦!"#$ = 1 𝑦!"#$ = 0 𝑦!"#$ = 1 𝑦!"#$ = 0 
𝑦!"# = 1 0.162 0.838 .115 .885 

𝑦!"# = 0 0.026 0.974 .028 .972 



 
As expected our SVM approach performed the 
best. However, in general, we were disappointed 
with our results. Our hit-rate was much smaller 
than we originally expected. However, this was in 
large part due to the high dimensionality of our 
data: with 95 possible genre labelings, a hit-rate of 
11.5% is far better than randomly choosing 
genres. Additionally, we found that we had a 
better hit rate on some genres than others: our 
algorithm in general had much more hits on niche 
genres like classical, metal, and deep electronic 
music than more generic genres like rock. Below 
are confusion matrices for the collapsed genres 
roughly corresponding to the classical and heavy 
metal music genres: 
 
 Test Error 

Classical 𝑦!"#$ = 1 𝑦!"#$ = 0 
𝑦!"# = 1 .512 .488 

𝑦!"# = 0 .017 .983 

 
 Test Error 

Heavy Metal 𝑦!"#$ = 1 𝑦!"#$ = 0 
𝑦!"# = 1 .452 .548 

𝑦!"# = 0 .021 .979 

 
As it was clear that our feature set was effective in 
differentiating clearly unique genres, we decided 
to train a classifier on a reduced training set 
containing only artists having the genres of 
classical, heavy metal, deep electronic, or country.  
We constructed a similar testing set, and ended up 
with a training set of 1686 examples, and a testing 
set of 484 examples. We utilized a one versus one 
SVM with the same hyper parameters as before. 
Its confusion matrix is below. 
 
 Test Error 
Reduced Data Set 𝑦!"#$ = 1 𝑦!"#$ = 0 

𝑦!"# = 1 .678 .322 

𝑦!"# = 0 .125 .875 

 
As expected, it performed very well relative to the 
classifier trained and tested on our whole data set. 
Such a result was heartening, and seemed to 

display that the features we collected could be 
relevant in helping to classify the genres of artists. 

CONCLUSION 

Our best performing algorithm was SVM using a 
one-versus-one scheme, followed by SGD using a 
one-versus-all scheme, followed by multi-label k-
nearest neighbors. In general, however, we were a 
bit disappointed with the hit rate of our results. 
The two main reasons we believe that our results 
over our entire training set were poorer than 
anticipated are due to the high dimensionality of 
our data and our base features used. The need to 
use an algorithm to collapse genres together 
distorted our original data, and the 95 genres we 
were left with were still far too many to train an 
effective classifier. Additionally, while the Spotify 
song features may be useful for recommendation 
purposes, it is likely that by aggregating them 
using different statistical measures we lost a lot of 
the information that makes genres unique.  

NEXT STEPS 

If we were to work improve our results, we would 
definitely start by improving the quality of our 
training set. This would involve reinventing our 
feature selection and extraction algorithms as well 
as our genre collapsing algorithms so as to both 
reduce the dimensionality of our problem and 
provide the best possible features for prediction. 
Additionally, we may also look at alternative 
methods at classification, and perhaps first build 
classifiers for the genre of individual songs, which 
could be used to classify artists. Such a scheme 
would allow us to operate directly on all of the 
data that we collected, rather than operating on 
summary statistics and measures of our data.  
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