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Introduction 

Successful development of oil/gas fields highly 

depends on informed decision making process. Such 

a decision making includes buying/selling the field, 

where/when to drill wells, how much oil should be 

produced per day and so on. Due to limited 

information about the subsurface a reservoir engineer 

builds multiple models (e.g. Monte Carlo simulations) 

and run flow simulations (reservoir simulations) to 

quantify uncertainty (UQ) of responses (e.g. barrels 

of oil produced for 20 years). Sensitivity analysis (SA) 

is performed in tandem with UQ which is to quantify 

how response uncertainty is apportioned to each 

uncertain model parameter. Knowledge obtained 

from SA is used in reducing complexity of models by 

fixing non-influential parameters, data assimilation 

and risk analysis. 

One of challenges of UQ/SA is that a reservoir 

simulation is computationally expensive. For realistic 

UQ/SA a sufficient number of samples must be 

generated from prior distributions of model 

parameters and flow simulations need to be run to 

obtain responses. Nevertheless, even a single 

simulation may take several hours to days to complete. 

Another challenge is that a response is high 

dimensional (spatiotemporal) and a lot of SA method 

assumes that a response is univariate. In this project, 

functional PCA (FPCA) is applied to reduce the 

dimensionality of responses (time-series curve at 

each well, see Fig. 2) in order to overcome the 

difficulties stated above. Next, a regression model is 

built by taking uncertain model parameters as 

predictors (Table 1) and PCA components as reduced 

responses. For a regression algorithm, boosting with 

regression model is utilized. Then Global Sensitivity 

Analysis (GSA) is carried out to quantify the effect of 

each parameter on the response. GSA is known as a 

robust SA method for nonlinear system but it has been 

limitedly applied to reservoir forecasts due to large 

computations. It is demonstrated that the proposed 

method can achieve UQ/SA of multivariate reservoir 

forecasts with high computational efficiency. 

Related Work 

Current practices of UQ/SA of reservoir forecasts 

focus on proxy modeling coupled with design of 

experiments (Zubarev et al., 2009; Jati et al., 2015; 

Arinkoola et al., 2015). They allow us to decrease the 

number of full forward simulations significantly but 

they have limitations. First, they assume that the 

response varies smoothly and it may not be true if a 

model parameter has a stochastically varying 

component (Caers, 2009). The case study in the 

project is a good example for this and it will be 

discussed later. Second if a behavior of reservoir is 

highly nonlinear, the number of models may not be 

sufficient.  

When it comes to SA, local sensitivity analysis (LSA, 

Morris, 1991) is widely used in reservoir engineering 

(Dubey et al. 2016; Xiao-Hu et al., 2012). LSA 

computes sensitivities by perturbing each parameter 

‘one at a time’ while other parameters are fixed. LSA 

is fast and offers easy interpretation but sensitivities 

are not valid when a behavior of system is highly 

nonlinear due to interactions between parameters. 

This necessitates the application of GSA which varies 

parameters globally over their domains of uncertainty 

(Sobol, 2001; Saltelli et al., 2008). One of drawbacks 

of GSA is its computational cost and it is often 

attacked by building a surrogate model of a flow 

simulator. Another disadvantage of GSA is that it 

assumes the response is univariate. As a result a 

response of interest is often confined to scalar value 

such as cumulative oil produced or net present value 

at a certain time. Nevertheless, reservoir responses 

are basically spatiotemporal. In order to tackle this 

problem some approaches compute sensitivities at all 

data points and sensitivities are represented as 

function of time (Helton et al., 2006; Herman et al., 

2013). They are not only computationally intensive 

but also offers redundant information (Campbell, 
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2006). This is because sensitivities at time step nt  is 

strongly correlated with the previous time step 1nt  . 

Therefore the goal of the research is to perform 

UQ/SA of multivariate responses with high 

computational efficiency. 

Dataset and Features 

Dataset used in this project is based on a field scale 

oil reservoir located in central northern Libya 

(Ahlbrandt, 2001, see Fig. 1 for geological model). 

There are 10 uncertain parameters (features) and their 

parametric distributions are given in Table 1. In order 

to obtain training set, Latin hypercube sampling is 

performed to generate 1,000 ( 1,000N  ) reservoir 

models ( ( )

1{ }i N

ix ) and responses 
( )

1{ }i N

original iy  are 

obtained from a flow simulator (streamline 

simulation). Here, 
( )i

originaly  is oil production rate 

(barrel/day) at three producing wells (therefore 

function of time and space), see Fig. 2.  

Next, FPCA is applied to
( )i

originaly . This includes 

decomposing y into linear combination of basis 

functions (Eq. 1) and applying PCA to the 

coefficients. (Ramsay, 2006; Grujic et al., 2015). B-

spline is chosen as the basis function and principle 

components (PC) are taken as reduced response
( ) ( 1, , )i

j PCj Ny . Here, PCN  is the number of PC 

taken and 7 PCs are taken because they explain more 

than 99% of total variance, see Fig. 3. 1st and 2nd PCs 

are displayed in Fig. 4. We can observe that there are 

three distinct groups of models which are consistent 

with Fig. 2. This is an example of abrupt changes in 

responses discussed in the previous section. In sum, a 

predictor is a sample of uncertain parameters 

generated from Monte Carlo simulations and 

responses are PCs.  

( )

1

( ) ( ) ( (1, ))
bN

i

original i i

i

t c t t T


 y  (1) 

where ( )i t : i-th basis function, ic : Coefficient of i-th 

basis function, bN : Number of basis function. 

 

Fig. 1 Reservoir model for the case study 

Table 1 List of uncertain parameters (TM: Transmissibility 

Multiplier)  

Num Parameters Abbrev. Distribution 

1 Oil-water contact owc U[-1076,-1061] 

2 TM of fault 1 mflt1 U[0,1] 

3 TM of fault 2 mflt2 U[0,1] 

4 TM of fault 3 mflt3 U[0,1] 

5 TM of fault 4 mflt4 U[0,1] 

6 Residual oil saturation sor N[0.2, 0.052] 

7 
Connate water 

saturation 
swc N[0.2, 0.052] 

8 Oil viscosity oilvis N[10, 22] 

9 Corey exponent of oil oilexp N[3, 0.252] 

10 
Corey exponent of 

water 
watexp N[2, 0.12] 

 

  

 

 

 

Fig 2. Responses from training 

examples (Oil production rate 

from three wells) 
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Fig. 3 Cumulative variance explained 

 

Fig. 4 First two PCs 

Methods 

As a regression method, boosting with regression tree 

is utilized. Tree-based method or CART 

(Classification And Regression Tree) stratifies or 

segments the predictor space into a number of simple 

regions (Breiman et al., 1984; Hastie et al., 2008). For 

prediction a hypothesis decides the region which the 

given input belongs to and the average of response is 

provided as predicted value (regression).  Suppose 

that we divide parameter spaces into M distinctive 

regions 1, JR R . The goal is to find those regions that 

minimize the residual sum of square (RSS) in Eq. 2 

(James et al., 2013).  

( ) 2

1

ˆ( )
j

j

J
i

R

j i R

y y
 

  (2) 

  

where ( )iy : i-th observation, ˆ
jRy : mean of ( )iy  that 

belongs to jR . 

In boosting the addition of elementary basis functions 

constitute a hypothesis (Hastie et al., 2008). The basis 

functions are shallow trees (stump) in this analysis. 

Loss function L  is taken as squared sum of errors. 

The number of trees is determined by cross validation 

(Fig. 5 and 6, left).   

The algorithm for boosting with trees is offered from 

Hastie et al. (2008). The predictive rule is that if an 

input x  is assigned to region  jR  a tree predicts the 

constant j  for that region. This can be formulated as: 

1

( ; ) ( )
J

j j

j

T x I x R 


    

  

with parameters 1{ , }J

j jR   .   can be found by 

minimizing the empirical risk  

( )

( )

1

ˆ argmin ( , )
i

j

J
i

j

j x R

L y 
 

     

  

Constants j can be easily determined (usually mean). 

To obtain jR , the following suboptimal solution is 

computed from greedy-top down approach.  

( ) ( )

1

ˆ argmin ( , ( , ))
m

i i

i

L y T x
 

    

  

Then boosted tree can be written as the sum of each 

tree (stump in this analysis). 

1

( ) ( , )
treeN

k

k

h x T x


    

  

Taking the forward stagewise procedure, the 

following equation is solved at each iteration.  

( ) ( 1) ( ) ( )

1

ˆ argmin ( , ( ) ( ; ))
k

m
i k i i

k k

i

L y h x T x



 

     

Loss function is taken as the squared error loss as   

( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( ) 2

( , ( ) ( ; ))

( ( ) ( ; ))

i k i i

k

i k i i

k

L y h x T x

y h x T x









 

   
 

When a regression model is trained with trees the 

algorithm split the tree at the location where RSS is 

minimized. If a predictor is influential on response, 

the split will lead to large reduction of RSS. Therefore 

the sum of the reduction of RSS indicates variable 

importance. This corresponds to the concept of 
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sensitivity and the reason why boosting with 

regression trees is chosen in the project is because the 

result of GSA can be validated by comparison.  

GSA computes sensitivities from Monte Carlo 

sampling and it is based on the decomposition of 

variance of response (Sobol, 2001; Satelli et al., 2008). 

The basic idea is that if a model parameter is sensitive 

it will contribute to large portion of the variance of 

response.  Two types of sensitivities are computed – 

first order sensitivity index jS  and total effect index

TjS . iS  quantifies the main effect of single parameter 

jX  on response Y R  without any interaction. Total 

effect index TjS  quantifies the effect of jX on Y R  

including all related interactions. Two effects can be 

written as Eq. 3 and 4, respectively.  

[ ( | )] / ( )j jS V E Y X V Y  (3) 

~1 [ ( | )] / ( )Tj jS V E Y X V Y   (4) 
 

GSA has been utilized in various field of science and 

engineering since it yields robust and consistent 

sensitivities for nonlinear systems. The drawback of 

GSA is its computational expense. If we have m

samples with n parameters, the number of forward 

runs required to estimate sensitivities is ( 2)m n  .  

Results and Discussion 

Seven hypotheses are fitted since they explain more 

than 99% of total variance (Fig. 3). Fig. 5 and 6 (right) 

show the scatter plots between training example and 

predicted values with correlation coefficient (1st and 

3rd PC). It is observed that the hypothesis shows 

significantly low training errors. To avoid overfitting 

the number of trees in boosting is determined by cross 

validation. 

Next, another 1,000 samples (test set) are generated 

from the distribution specified in Table 1. This is to 

validate whether the fitted model offers valid 

uncertainty range for test sets. Because PC loadings 

were saved in the previous step, it is possible to 

compute the coefficients of basis functions in Eq. 1. 

As a result, curves of time series can be reconstructed 

and Fig. 7 shows the result. In order to visualize the 

uncertainty, P10, P50, and P90 of data at each time 

step are displayed (blue for training, red for test sets). 

It is observed that reconstructed curves show close 

approximation to original uncertainty, meaning UQ 

with the proposed method is valid.  

With regression model obtained, both first order 

sensitivity and total effect indices are computed, see 

Fig. 8 (sensitivities of 1st PC).  The sample size 

required to make sensitivities converge is 

approximately 50,000. Because there are 10 

predictors the number of total simulations required is 

600,000 ( ( 2)m n  ). In this example both indices do 

not show large difference which means that 

interactions are not significant. It is computationally 

infeasible if a full flow simulator is used. 

Nevertheless, with regressions the computation takes 

less than 30 mins.  

The results show that ‘big hitters’ are owc and oilvis 

followed by sor. In order to verify the result of GSA, 

variable importance from trees is also computed, see 

Fig. 9 (top: 1st PC, bottom: 3rd PC). We can observe 

that variable importance from trees are consistent 

with GSA. This proves that the proposed method 

offers valid sensitivities from GSA with high 

computational efficiency.   

 

 

Fig. 5 Cross validation errors with number of trees (left) and 

training data vs. predicted values (right) for 1st PC.  

 

Fig. 6 Cross validation errors with number of trees (left) and 

training data vs. predicted values (right) for 3rd PC. 
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Fig 7. Responses from 

training (blue) and test (red) 

set. Each three curves 

represent P10, P50, and P90 

at each time step. 

 

 

Fig 8. First order sensitivity (top) and total effect (bottom) 

indices. 

 

 

Fig. 9 Variable importance for 1st PC (top) and 3rd PC (bottom) 

Conclusion  

In the project, the workflow for UQ/SA of reservoir 

forecasts with machine learning is proposed. By 

applying functional PCA to the response, high 

dimensionality of responses is reduced. Regression 

modeling by boosting with regression trees is 

performed to build a proxy flow simulator. It is 

demonstrated that the proposed method gives close 

approximation to full flow simulator with much faster 

computations. Regressors obtained from the analysis 

is used for GSA which requires a large amount of 

forward simulations. The results are validated by 

comparing with variable importances from trees. It is 

proved that the proposed method offers valid 

sensitivities with high computational efficiency. 

Future work  

In the project, separate regression analyses are 

performed depending on the number of PCs. If a lot 

of PCs are needed to account for the variance this 

would be cumbersome. Therefore for the future work 

multivariate regressions will be applied to tackle this 

challenge.  
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