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VIDEO GAME GENRE CLASSIFICATION USING VIDEO GAME MUSIC

BOJIONG NI, DAVID WUGOFSKI, ZHIMING SHI

1. Problem Definition

Our project will attempt to use the soundtracks of a
video game to classify the game’s genre. While music
genre classification is a well-studied problem, classifying
a video game’s genre off of its soundtrack is not an area
that has received attention. While there has been heuris-
tic analysis of what makes a soundtrack work for a given
video game genre, no algorithms currently exist which at-
tempt to take a soundtrack and estimate the video game’s
genre from that data. Video games represent very deep,
high complexity sets of data (with sounds, images, story
events, etc) and few algorithms exist which attempt to
analyze them. Songs, on the other hand, are well stud-
ied, and many models exist for analysis. We believe that
by analyzing a video game’s soundtrack along, we should
be able to gain substantial insight into the video game’s
genre.

2. Data

We’ve built our own labelled dataset from MIRSoft’s
database[1] of video game music files, which includes the
complete soundtracks. We’ve crawled and downloaded
the data of all 53,630 video games, out of which only
7900 games have music provided on the site. Further-
more, only 1349 games had music files formatted in ways
we could process. Each game has one or several pieces
of music, with a meta data file containing information of
its release and content, including genre. We’ve analyzed
the genres of all games, and decide to manually re-define
genres based on the originally provided ones. The gen-
res we define are unambiguous, well-understood, and each
contains a workable size of games:

Genre # Games Example
Logic, Puzzle 222 Mah Jong Solitaire
RPG, Fantasy 225 Final Fantasy series

Platformer (Jump n Run) 343 Super Mario
Fight 161 Street Fighter
Sports 59 Fifa Soccer
Racing 70 Fomula 1

Strategy 62 Castles
First Person Shooting 183 Dark Forces

3. Feature Extraction

We used two forms of features for our learning algo-
rithms. The first feature vector layout contains features
for individual songs. For this vector we chose features

commonly used in musical genre classification, laid out
in [2] and [3]. Our second feature vector combines all
the song feature vectors from a soundtrack into one video
game feature vector.

3.1. Song Feature Vector. The commonly-used fea-
tures for musical genre classification are studied in [2] and
[3]. We’ve provided an explicit, ordered outline of the fea-
tures we extract in table 1 (in Appendix A.), contrasting
that with Silla’s feature vector[2] in table 2. We have a
total of 46 features in our vector. The feature vector is
divided into three categories: timbral features, rhythmic
features, and pitch features. The timbral features outline
the frequency-spectral behavior of the music as it varies
with time. The rhythmic features attempt to quantify
the general rate at which notes are played in the music.
The pitch features attempt to quantify which notes are
favored over others in a musical composition.

For most of these features, direct feature calculations
are made over a small window of the song. The average
and standard deviation of these features are then calcu-
lated over the course of the song. These averages and
standard deviations are the actual features included in
the song vector.

3.1.1. Timbral Features. The timbral feature are meant
to capture how the musical composition is distributed
spectrally. While pitch features are concerned with which
notes are being played, timbral features are related to
which instruments are being used to play the notes of the
piece. While the pitch features would be relatively in-
sensitive to whether a sequence of notes was played on
a piano or guitar, the timbral features would be greatly
affected. The song features relevant to timbre are

(1) Spectral Centroid: The center of gravity for the fre-
quency spectrum. The spectral centroid can be thought
of as the expected value of the spectral distribution of a
frame. Larger values of the centroid reflect a bias towards
higher frequencies, whereas smaller values reflect a bias
towards lower frequencies.

(2) Spectral Bandwidth: The spectral bandwidth at
frame t is the mean-squared difference between the fre-
quency spectrum and its centroid. If we consider the
spectral centroid to be the expected value of the spec-
tral distribution of a frame, the spectral bandwidth can

Date: December 17, 2016.

1



2 BOJIONG NI, DAVID WUGOFSKI, ZHIMING SHI

be considered a version of the variance of the spectral dis-
tribution of a frame. Large values of the spectral band-
width equate to a spectrally broad frame, while small
values equate to a spectrally narrow frame.

(3) Spectral Rolloff: The spectral rolloff is the fre-
quency bin below which 85% of the spectrum magnitude
distribution is concentrated.

(4) Zero Crossing Rate: The zero crossing rate is the
number of times the time-domain signal crosses zero in a
window frame.

(5) Mel-Frequency Cepstral Coefficients: The
Mel-Frequency Cepstral Coefficients (MFCCs) are a
perceptually-motivated modified version of the STFT.
MFCCs capture spectral perception better than the
STFT two reasons. First, the MFC is a ceptstum: a
frequency spectrum of a frequency spectrum. It measures
the repetition and periodicity of frequencies. Second, the
mel scale mapping is meant to approximate how humans
recognize the spacing of notes, allowing the MFC to be a
better cepstrum than one taken directly from the STFT.

According to results obtained in [3], only the first five
MFCCs are relevant for musical genre classification. For
this reason, we have chosen only to add the first five
MFCCs to our feature vector.

(6) Spectral Contrast Coefficients: The idea behind
using Spectral Contrast Coefficients for music genre clas-
sification is outlined in [4]. While MFCCs measure the
periodicity of the spectrum of a frame, the SCCs measure
the roughness of the spectrum when broken into different
octaves. Another way to view these features is as a mea-
sure of which bands contain the most spectral activity for
a given frame.

(7) Spectral Flux: The spectral flux of a frame is the
sum of the squared distances between the normalized
magnitudes of successive frequency bins. It is a measure
of how rapidly the spectrum changes in frequency.

(8) Low-Energy Feature: The low energy feature is de-
fined as the fraction of frames whose RMS value is below
the RMS value of the song as a whole. The low-energy
feature measures how concentrated the energy of the song
is with respect to time.

3.1.2. Rhythm Features. The rhythm features extract in-
formation on the timing, beat, and tempo of the song. It
measures the rate at which notes are played back and the
speed of the music.

The first step in calculating the rhythm features is con-
structing the beat histogram of the song. The beat his-
togram is a measure of how dominant certain beats are
in the song.

For our beat histogram, we take the time average of
the tempogram of our song calculated according to the
algorithm laid out in [5]. Using sudden changes in spec-
tral content between frames, the tempogram algorithm
first creates a ”novelty curve” which peaks in intensity
on the onset of notes. Using a windowed autocorrelation
algorithm on the novelty curve, the algorithm creates a

2-D curve of which tempos most accurately reflect the
underlying periodicity of the piece of music. This curve
is the tempogram of the signal.

We then average the tempogram across frames to ob-
tain our beat histogram. With this histogram we locate
the two largest peaks. We find their amplitudes and their
periods. As well, we calculate the sum of the beat his-
togram to measure the rhythmic intensity of the song.

3.1.3. Pitch Features. The pitch features measure which
notes are preferred in a musical composition. Much like
the key figure of merit for the rhythmic features is the
beat histogram calculated from the tempogram, the key
figure of merit for the pitch features is the pitch his-
togram calculated from the chromagram. However unlike
rhythm, because notes can be played in different octaves,
there is a distinction made between an octave-less, folded
pitch histogram and an unfolded pitch histogram which
spans multiple octaves.

Our formation of the pitch histograms begins with the
implementation of a constant-q transform applied to the
signal, as described in [6]. The constant-q transform is
a variation on spectral frequency representation with fre-
quency bins spaced out in octaves. This is ideal for pitch
calculations, as notes are likewise spaced in octaves. Thus
you can think of each frequency bin as representing one
note. We then map each bin in the CQT to the same
octave, creating a chromagram: a representation of the
strength of presence of each ”letter” note, regardless of
octave.

After we have performed this map, we then perform
an energy normalization method prescribed in [7]. This
method smooths out the chromagram perceptually. It
attempts to better catch gradual changes in pitch and
remove noise while better matching human perception.

By averaging the constant-q transform across all
frames, we get a measure of which notes from which oc-
taves were favored: the unfolded pitch histogram. Like-
wise, by averaging the chromagram across all frames, we
get a measure of which ”letter” notes were favored, re-
gardless of their octave: the folded histogram. We take
the period of the dominant pitch from the unfolded his-
togram, the amplitude and period of the most dominant
pitch from the folded histogram, the difference in pitch
number (i.e. frequency) between the most and second-
most prominant pitches of the folded histogram, and the
sum of the pitch histogram. The sum of the pitch his-
togram measures the overall intensity of the song.

3.1.4. Implementation. We implemented song feature ex-
traction using the LibROSA python library [8]. For spec-
tral features, all except the spectral flux and low-energy
feature are implemented in the LibROSA library. For
rhythm and pitch features, the fundamental figures of
merit (tempogram, constant-q transform, and chroma-
gram) is implemented. In our implementation, we used
Hann window frames of 512 samples and Fourier trans-
forms of 2048 samples. For the constant-q transform we
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used a fundamental frequency of 16.35 Hz (C0) and 8
octaves.

3.2. Aggregate Feature Vector. Once all the features
for the individual songs had been extracted, we attempted
to create an aggregate vector composed of the features
from the individual songs. We decided to start simply by
taking the mean and standard deviation of each feature
in the song feature vectors across the entire soundtrack.
The resulting vector contained 92 features: two for each
feature in the song vectors. For the purposes of training
and testing, we did not consider video games with only
one song in their soundtrack, as all the standard devia-
tion features in the aggregate vector would necessarily be
zero in such cases.

After creating these 92 ”simple” aggregate features,
we wanted to try devising other features to possibly in-
crease learning performance. One option we considered
and had time to implement was a form of k-means clus-
tering features. For these features, we ran k-means clus-
tering on all our song feature vectors, creating 6 clusters
for the songs. For each game, we calculated how many of
its songs mapped to each cluster. We normalized these
numbers by the total number of songs in the soundtrack,
and added the 6 numeric results to the aggregate feature
vector. In total, our aggregate feature vectors contained
98 features.

4. Game Genre Classification

In the original data set, some game genres have a small
number of samples. We hand picked 5 game genre with at
least 96 games for our projects. We threshold by requir-
ing each game to have at least 3 songs in the soundtrack,
hence our approach in feature aggregation would be more
meaningfully applicable.

4.1. Classification Algorithm. We have two high level
approaches for this problem. The first approach is to train
the game genre on each of the songs from the game. At
prediction time, each song from the game will receive a
prediction of genre. Then we run a majority vote scheme
where the genre with highest votes from the songs will be
selected as the genre of the game.

In the second approach, we aggregated the music fea-
tures from each song in the game to create one feature
vector per game. Then train and test on the game vec-
tor.

The aggregated game feature contains the mean and
standard deviation of all music features from the game. In
addition, we ran a k-means clustering for all songs from
all games. Then for each game, we create a vector of
size k, where each element is a histogram indicating how
many songs from this game belongs to each of the k clus-
ters. We then normalize this vector and concatenate it
together the mean vector and standard deviation vector.

In both approaches, we trained trained four different
models:

• Gaussian Naive Bayes Since our feature vector
is real valued. One strategy is to model each fea-
ture with Gaussian distribution. Using the Naive
Bayes classifier discussed in class, we can extend
the classifier to multi class instead of just binary.

• SVM one vs one SVM one vs one is to fit one
SVM linear classifier per class (genre) pair. At
the prediction time, the class receiving the high-
est vote is selected as prediction label.

• SVM one vs rest SVM one vs rest is to fit one
classifier per class (genre). At prediction time,
the class with highest confidence score is marked
as prediction label. For both SVM algorithms,
we’ve experimented on different kernels, and we
concluded that the linear kernel achieves the best
classification results.

• Deep Neural Network The DNN we used has
three layers, with 10, 20, 20 hidden units in each
layer. We’ve experimented on different configura-
tions of the DNN, including the number of layers,
number of units, and the step time, this achieved
the best result.

4.2. Results and Evaluation. To We hold off 20% of
our selected dataset as a test set for evaluation. We’ve
looked at 2 different evaluation metric: the test accuracy
and the F1 score which combines both precision and re-
call. We realized that the F1 score are all pretty close
numerically to our test accuracy, therefore, for presenta-
tion in this report, we only tabulate our test accuracy:

Learning 2 classes 3 classes 5 classes
method Vote Agg Vote Agg Vote Agg
Softm 60.5% 60.5% 61.4% 61.4% 25.3% 42.1%

NB 55.3% 50.0% 49.1% 50.9% 25.3% 29.5%
SVM 1v1 50.0% 60.5% 40.4% 47.4% 22.1% 26.3%
SVM 1vA 50.0% 60.4% 33.3% 36.8% 33.7% 22.1%

DNN − − 52.6% 45.6% 20.0% 34.7%

Above, we’ve tabulated the results of classification using
both approaches of our feature extraction: individual
songs with voting, and using aggregated sound track
feature vectors for each game. We’ve carried out clas-
sification using 2 classes (Puzzle and RPG), 3 classes
(Puzzle, RPG, Platformer), and 5 classes (Puzzle, RPG,
Platformer, First-person shooting, and strategy).

First, note that in most cases, classification using ag-
gregate features out performs that using individual songs
with voting. This confirms our hypothesis that the sound-
track as a whole collectively captures more characteris-
tics of the game. Although the overall accuracy, even by
our best algorithm attempt, which is softmax on 5-class
dataset, is not that high, we’d still consider this attempt
somewhat successful, as we achieved good improvement
over the bayes classifier, which minimizes the error of mis-
classification. In this case, we still manage to out-perform
the baseline. It’s worth noting that in our DNN, we oc-
casionally observe over-fitting, with training accuracy as
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high as 82%. We’ve performed principle component anal-
ysis with singular value decomposition, and realized that
our aggregate features has around 16 principle compo-
nents. We’ve also attempted dimensionality reduction by
projecting our feature vectors into this reduced space, the
results is not significantly better.
With the above said, our final accuracy is not as satisfac-
tory as we set out to believe. We’ve manually evaluated
a few songs, from different classes, and identified some
problems that our aggregate feature vector fails to cap-
ture. For example, there is a distinction between game
entrance music, and background music. The game en-
trance music sounds pretty similar for a puzzle game or
a shooting game. This suggests some inadequecy still in
our feature vectors, which we shall discuss below.

5. Discussion And Further Work

Our results show promise for using soundtracks to es-
timate video game genre, though there is still room for
improvement. Our best results were achieved with Soft-
max Regression using our aggregate feature vector. We
believe that, with further improvements to our feature
aggregation, we can improve the performance of our algo-
rithms. We have also considered improving the individual
song classification algorithm through the use of a differ-
ent cost function. As well, we considered the practicality
of reducing the dimensionality of our feature vectors to
improve performance.

Given more time, we would like to increase our dataset
size and consider other methods of feature aggregation.
We eliminated many viable games simply because their
file formats were not widely supported. Give more time,
we would like to track down methods of converting or di-
rectly processing those songs to dramatically increase the
number of games we can use as samples.

Additionally, we have considered other methods of fea-
ture aggregation we have not had time to implement.
From listening to songs in our database, we find that
the general feel of a song is much more indicative of the
video game setting rather than the genre. We believe
that, when a video game soundtrack is being composed,
song features are chose to represent certain ”moments”
in the video game - menu screens, cutscenes, action se-
quences, firefights, etc. - rather than the video game as a
whole. Thus we expect that the optimal aggregate feature
vector contains features relating to the presence of these
moments in the game: a puzzle game would have quite a
few ”menu” moment songs, while a first person shooter
may have a lot of ”cutscene” and ”firefight” moments.

While we attempted to use our k-means features to ex-
press this, we did not find them to significantly improve
our results. Thus we would like to investigate other meth-
ods of better expressing these moment distributions. One
option we considered is to use the results from individ-
ual song classification as features for our aggregate feature

vector. If the key characteristic for song to game genre es-
timation is in fact the moment the song is meant to repre-
sent, the results of our individual song classification algo-
rithm would be closely correlated with the moments each
song represents. At the very least, this method would
ensure the aggregate feature vectors performed no worse
than the individual song vectors.

While we are focused on improving aggregate feature
vectors, since those vectors produce the best results, we
have also considered using a different objective function
for our individual song classification. Our individual song
classification methods attempt to classify all songs ac-
cording to genre. However we only need for a plurality
of songs within a game to be classified as belonging to
the correct genre. The objective functions used in this
project do not account for the fact it is okay to misclas-
sify songs, provided the genre with the most songs in a
video game is the genre of the game. By devising an ob-
jective function which would take this voting method into
account, we expect we could improve the performance of
individual song classification.

Lastly, we also wish to look into running dimensional
reduction on our current feature vectors. From analyzing
the k-means clusters, we found that the centroids only
varied significantly in about 5-10 dimensions, suggesting
very little variation in our data along those dimensions.
Additionally, running PCA on our song feature vectors,
we found that only about 15 dimensions were necessary
to capture the variance of our data. These results indi-
cate we have a lot of redundancy in our feature vector we
could eliminate by running PCA and producing a new set
of song vectors. As well, for the purposes of determining
aggregate features, it may be relevant to manually deter-
mine how much each feature improves the performance
of our learning algorithm, and remove features which do
not significantly increase performance.
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Table 1. Our feature vector

Timbral features

Spectral centroid average
Spectral centroid std. dev.
Spectral bandwidth average
Spectral bandwidth std. dev.
Spectral rolloff average
Spectral rolloff std. dev.
Zero-crossing rate average
Zero-crossing rate std. dev.
MFCC #1 average
MFCC #2 average
MFCC #3 average
MFCC #4 average
MFCC #5 average
MFCC #1 std. dev.
MFCC #2 std. dev.
MFCC #3 std. dev.
MFCC #4 std. dev.
MFCC #5 std. dev.
SCC 1st octave average

SCC 2nd octave average

SCC 3rd octave average

SCC 4th octave average

SCC 5th octave average

SCC 6th octave average

SCC 7th octave average
SCC 1st octave std. dev

SCC 2nd octave std. dev

SCC 3rd octave std. dev

SCC 4th octave std. dev

SCC 5th octave std. dev

SCC 6th octave std. dev

SCC 7th octave std. dev
Spectral flux average
Spectral flux std. dev
Low-energy feature

Rhythmic features

Relative amplitude of first beat histogram peak
Relative amplitude of second beat histogram peak
Period of first beat histogram peak
Period of second beat histogram peak
Ratio of first peak amplitude to second peak am-
plitude
Sum of beat histogram

Pitch features

Relative amplitude of folded pitch histogram peak
Period of first unfolded pitch histogram peak
Period of first folded pitch histogram peak
Pitch interval between first and second peaks of
folded pitch histogram
Sum of pitch histogram

Table 2. Silla’s feature vector from [2]

Timbral features

Spectral centroid average
Spectral rolloff average
Spectral flux average
Zero-crossing rate average
Spectral centroid std. dev.
Spectral rolloff std. dev.
Spectral flux std. dev
Zero-crossing rate std. dev.
Low-energy feature
MFCC #1 average
MFCC #2 average
MFCC #3 average
MFCC #4 average
MFCC #5 average
MFCC #1 std. dev.
MFCC #2 std. dev.
MFCC #3 std. dev.
MFCC #4 std. dev.
MFCC #5 std. dev.

Rhythmic features

Relative amplitude of first beat histogram peak
Relative amplitude of second beat histogram peak
Period of first beat histogram peak
Period of second beat histogram peak
Ratio of first peak amplitude to second peak am-
plitude
Sum of beat histogram

Pitch features

Sum of pitch histogram
Period of first unfolded pitch histogram peak
Relative amplitude of folded pitch histogram peak
Period of first folded pitch histogram peak
Pitch interval between first and second peaks of
folded pitch histogram
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