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1 Introduction

In modern hadron colliders, such as the Large Hadron
Collider (LHC) at CERN, sufficiently high energies
are reached that the properties of the elementary con-
stituents of matter can be probed. Particle collisions
in the center of the ATLAS detector cause the creation
of observable high-energy particles, of which quarks and
gluons comprise one of the largest physically “interest-
ing” components. They deposit large signals, called
“jets”, within the surrounding detector subsystems.

On a collision-by-collision basis, the classification of
each jet by the type of particle that produced it is called
“tagging”. The relative locations and sizes of hits within
a jet are correlated with its type in complex ways that
are only partially understood physically.

In the “forward” region of the detector, particles trav-
eling with small angles relative to the beam axis are ob-
served. Due to budgetary and mechanical constraints,
the physical layout of the detector is different in this re-
gion compared to the “central” region; in particular, no
ultra-fine granularity tracking information is available
to resolve hits very near the interaction site, and the
angular granularity of the detector is coarser. The com-
bination of these and other detector effects causes jet
classification algorithms that perform well in the central
region to fail in the forward region.

We compare methods for jet classification for simu-
lated high-energy collisions in the central and forward
regions at the upgraded Run IIT ATLAS detector. Con-
struction will begin on the detector upgrades in 2018,
so it is an ideal time to develop and evaluate improved
algorithms using simulation. In particular, we explore
geometric and observed variables in order to optimize
the performance of algorithms such as logistic regres-
sion, support vector machines, and neural networks.

2 Related Work

Jet tagging is the subject of much current research.
Efforts range from defining new features, such as the
EEC discussed later in this note [1], to applying tradi-
tional multivariate learning techniques to simulated in-
teractions [2], and finally to applying such techniques

to actual data observed by ATLAS and other experi-
ments [3] [4]. These efforts have proven effective in the
central region, where the detectors have the best spatial
and energy resolution, but they have not been applied
to the less well-understood forward region.

More cutting-edge efforts include applying convolu-
tional neural networks and other deep learning tech-
niques to simulated jets in order to explore performance
at hypothetical next-generation collider experiments [5].

3 Dataset description

A sample of ATLAS Run ITI Upgrade simulated proton-
proton collisions was selected to provide the training and
testing dataset for this task. The simulated event en-
ergy and luminosity conditions reflect those expected for
the “HL-LHC” running period post-2018. The sample
consists of about 25,000 “dijet” events with two jets of
approximately equal momentum oriented opposite one
another. Such events are advantageous because the sig-
nal jets tend to have much higher energy than the back-
ground “pile-up” interactions. In order to avoid contam-
ination by this uninteresting background, only the high-
est energy jet in each event is considered. This yielded
a sample of 17,023 gluon jets and 7,835 quark jets.

A full simulated event record is about 7 MB in size,
and contains a great deal of extraneous information un-
related to the jets of interest. Therefore, a simple data
structure called a ROOT tree was created with only the
necessary jet variables [6], which was only about 16 MB
for the entire sample.

The variable |n| characterizes the angle of a jet with
respect to the beam. Since the detector sensitivity is
not constant with varying angle, the data sample has
been binned according to |n|, and tagging discriminants
will be developed indepently for each bin. The choice
of bins, along with the fraction of the total quark and
gluon samples in each bin, are shown in Table 1. The
|n| distributions for both quark and gluon jets in this
sample are shown in Fig. 1.



Region |n| bounds g-jet fraction | g-jet fraction
R1 <1 0.404 0.567
R2 1< |n| <2 0.296 0.302
R3 2<n <28 0.192 0.105
R4 |28<|n/<32| 0.0688 0.0177
R5 32<n <4 0.0391 0.0078

Table 1: The five bins in |n|, as well as the fraction of to-
tal quark and gluon jet samples present in each bin. Note
that gluon jets are more central than quark jets, in the sense
that they tend to have larger angle with respect to the beam
axis. One difficulty of building powerful jet classifiers for the
forward region is that there are fewer samples to train on com-
pared to the central region.
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Figure 1: |n| distributions for quark and gluon jets in the
sample, normalized to 1. The vertical black lines delineate
boundaries between different |n| bins.
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Figure 2: A schematic of the ATLAS inner detector, showing
representative values of |n)|.

4 Features

Most discriminating variables effective for quark-gluon
tagging relate to the multiplicity of particles within the
jet, which can be estimated using either the number
of charged-particle tracks or the number of topologi-
cal calorimeter clusters observed within the jet radius
[3]. Variables related to the correlations between jet
constituent directions and energies are also possible to
exploit [1].

Discriminating variables extracted from the described
dataset are listed in Table 2, along with two quanti-
ties characterizing their discriminating power. Denote
the effiency for selecting quark jets as eff,, and that for
gluon jets as eff,. This is simply the ratio of the number
of jets selected by a discriminant over the total num-
ber in the sample. For a discriminant that uses only
one of the variables, there is a simple functional rela-
tionship between the two efficiencies, so the gluon effi-
ciency can be written as a function of quark efficiency:
eff; =effy(effy). The curve obtained by this relationship
is called a ROC curve, as for example in Fig. 3. The first
quantity is eff;(0.5), the efficiency for selecting gluons
when the quark selection efficiency is 50%. The second
quantity is the separation achieved by the variable over
all possible values, which is obtained by integrating the
quantity eff,—eff,(effy) from 0 to 1.

Some of the extracted variables use truth informa-
tion from the simulation that is not available for actual
data, while others (reco) use only information obtained
from the event reconstruction. Truth variables perform
better than reco variables in all regions, and the best
performing variable is the EEC defined in [3]. The best-
performing reco variable differs between the central re-
gion, where tracking is most precise, and forwards re-
gions, where the calorimeter is more precise.

5 Methods

Because of the small number of examples in the forward
region, we chose to implement learning algorithms that
could be trained effectively using such limited statistics.
We also limited the input number of features by using
only two or three of the discriminating variables dis-
cussed in the previous section. This is possible because
two features that both contain information about mul-
tiplicity (N), are highly correlated and do not provide
as much information as one multiplicity and one width
feature (W). Given a sufficient number of examples, it
would in principle be possible to achieve better results
by combining multiplicity or width variables from the
tracker and the calorimeter, which are independent, but
this was not pursued in this project.



Variable R1: g-jet eff at 50% | R1: integrated separation | R4: g-jet eff at 50% | R4: int. sep.
Nirk reco1000 0.161 0.256 0.476 0.024
Nirk reco500 0.157 0.259 0.476 0.023

Nivk truth 0.126 0.283 0.134 0.292

NQO%constit,reco 0.191 0.220 0.352 0.090
Neonstit truth 0.102 0.299 0.123 0.322

Wirk truth 0.152 0.213 0.129 0.244

Wcalo,reco 0.204 0.207 0.335 0.130
Wealo,truth 0.116 0.236 0.118 0.252

EECeco 0.191 0.215 0.346 0.116

EECuh 0.077 0.294 0.075 0.306

Table 2: Discriminating variables used in this study, along with two quantities characterizing their effectiveness described
above. For the g-jet efficiency at 50% working point, smaller is better. For the integrated separation, larger is better. In each
column, the best-performing variable based on truth information is EEC (bolded), though the best-performing reconstruction
variable is different in the forward region compared to the central region (also bolded). These variables are described above.
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Figure 3: The track-based energy-energy-correlation angularity ([3]) distributions for the R1 region, along with the ROC curve
obtained by a thresholded decision stump on this variable.



Each feature was scaled (independently for each |n]
region) to have mean zero and standard deviation 1.

The algorithms chosen were logistic regression (LR)
using the “L2” norm as penalty with an intercept term,
a support vector machine (SVM) with various kernel
functions described below, and a sequential dense neu-
ral network (NN) with one or two hidden layers using
the rectified linear activation function. For the SVM
and NN, the prediction error on the training sample was
used as the objective function.

In LR, a weight vector 6 of length n+1, where n is the
number of features, is optimized so as to maximize the
logistic likelihood function hg(z)¥(1 — hg(x))'~Y, where
ho(x) = m, x is an example feature vector, and
y is the correct label. A regularization term is added to
the likelihood function to penalize weight vectors with
very large values. In particular, the Newton-Raphson
method was used to perform this optimization via the
scikit-learn package [7].

An SVM is capable of optimizing a linear decision
boundary with dimensionality equal to the number of
examples (a “separating hyperplane”). A nonlinear de-
cision boundary in the feature space can be obtained
by using a kernel function. The SVM maximizes the
gap between examples of the different classes, where the
shape of the gap is determined by the choice of kernel
function. Predictions for new examples are then made
by observing on which side of the separating plane they
fall. The scikit-learn “SVC” class was used to perform
the optimization.

Finally, NN’s are capable of optimizing an arbitrary
non-linear decision boundary in any dimension. The in-
dividual cells in the network contain weight and bias
terms that are optimized with respect to some objective
function evaluated on the output of the network, most
often using an efficient algorithm called backpropagation
in conjunction with gradient descent. Backpropagation
is an application of the chain rule that allows computa-
tion of the gradient at each layer in the network, iter-
ating “backwards” from the outward layer towards the
input layer. The scikit-learn multi-layer perceptron clas-
sification class was used to perform the learning.

6 Results

Since LR is the most efficient of the three algorithms
to train, we evaluated the best combination of variables
to use in each |n| region by using all possible combina-
tions of N+ W, N+ EEC, and W + EEC features as
input to the LR classifier. We also assessed combina-
tions of three features: one multiplicity, one width, and
one correlation function. We did not evaluate perfor-

mance for combinations of reconstruction variables with
truth information, since such combinations do not give
reproducible results. The hyperparameters for the LR
algorithm are the convergence tolerance and the regu-
larization strength, and we determined that the default
values of 0.0001 and 1.0, respectively, gave the best per-
formance across the regions and feauture combinations.

Our three metrics for evaluating classification per-
formance were the prediction accuracy on the test set
(larger is better), the gluon efficiency at 50% quark effi-
ciency (smaller is better), and the integrated separation
described in the features section above (larger). Com-
puting the latter two metrics requires computing a one-
dimensional discriminant from the classifier, which was
done using the class probabilities evaluated on the test
dataset. Usually, the feature combination that performs
best on one of these metrics also optimizes the others.

After determining the best two- and three-feature
combinations for each region, an SVM was trained on
each of these. We examined the performance of linear
and polynomial kernel functions of degree 3-5, and de-
termined that these were not superior to the default ra-
dial basis function. We also required the model to train
class probabilities in addition to optimizing the decision
boundary, so as to compute the same performance met-
rics.

We determined that the optimal choice of number of
layers for the NN so as to optimize accuracy without
overfitting was two, with 10 nodes in the first layer and
5 in the second. The scikit-learn implementation of the
NN classifier uses the cross-entropy loss function, and
we chose the ‘lbfgs’ solver which uses a form of back-
propagation to optimize node weights. We determined
that the rectified linear unit function f(z) = max(0, x),
was the optimal choice for activation function. Since
the NN is non-linear in nature, we added the transverse
momentum of the jet, pr, and the jet charge to the in-
puts. These variables are not discriminative in nature,
but do contain correlations with the discriminative vari-
ables that could be exploited by a nonlinear classifier.

The performance of each of these classifiers in all |n|
regions can be seen in Table 3. Only the performance
for reconstruction variables is shown for brevity. In all
cases, the multivariate classifiers outperform the one-
feature classifiers studied above.

7 Conclusion

The LR and NN algorithms achieve similar results,
though the SVM did not perform as well. More sur-
prisingly, the performance in the far-forward region Rb5
was not significantly degraded compared to the central
region. This implies that fairly pure and efficient quark



Logistic Regression

SVM classifier

NN classifier

0.81, 0.102, 0.29
0.81, 0.092, 0.29

0.80, 0.122, 0.22
0.80, 0.122, 0.22

0.80, 0.118, 0.28
0.81, 0.093, 0.31

0.77, 0.121, 0.27
0.77, 0.122, 0.28

0.77, 0.137, 0.21
0.77, 0.130, 0.21

0.79, 0.101, 0.29
0.79, 0.084, 0.29

Region Variables
R1 Ntrk,reco500 + Wcalo,reco
R1 Ntrk,reco500 + Wcalo,reco + EECreco
R2 Ntrk:,recolOOO + Wcalo,reco
R2 Ntrk,recolOOO + Wcalo,reco + EECreco
R3 Wcalo,reco + EECreco
R3 NQO%constit,reco —+ Wcalo,reco + EECTeco

0.71, 0.155, 0.23
0.71, 0.155, 0.23

0.70, 0.173, 0.22
0.70, 0.175, 0.22

0.66, 0.253, 0.20
0.66, 0.253, 0.20

R4 Noo%eonstit.reco + Wealoreco 0.61, 0.355, 0.11 | 0.58, 0.402, 0.04 | 0.64, 0.388, 0.09
R4 Nivkreco500 + Wealoreco + EECreco | 0.63,0.266, 0.16 | 0.58, 0.402, 0.05 | 0.60, 0.372, 0.08

R5 Nirkrecoso0 + Wealoreco 0.62, 0.185, 0.12 | 0.71, 0.332, 0.15 | 0.74, 0.148, 0.24
R5 Nipkreco500 + Wealoreco + EEChreco 0.64, 0.216, 0.12 | 0.71, 0.246, 0.22 | 0.74, 0.148, 0.24

Table 3: Performance for different classifier algorithms in each |n| region. In each column, the first number is the prediction
accuracy, the second is the gluon efficiency at 50% quark efficiency, and the third is the integrated separation. The optimal

value for each |eta| region and number of features is bolded.

jet samples will be available all the way to |n| = 4.0,
enabling new physics searches at the upgraded ATLAS
detector. Future efforts should focus on acquiring much
larger datasets in order to exploit classifiers with more
input features and more sophisticated structures. In-
creasing the number of examples by an order of mag-
nitude would probably be sufficient to more carefully
explore the differences in performance between these al-
gorithms and combinations of variables.
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