
Detecting Musical Key with Supervised Learning

Robert Mahieu
Department of Electrical Engineering

Stanford University
rmahieu@stanford.edu

Abstract—This paper proposes and tests performance
of two different key-estimation system architectures based
on supervised learning principles and music fundamentals.
The systems take as input an average chroma feature
vector representation of a query song and returns both
the estimated mode and tonic note, together representing
the key of the piece. The systems were both trained using
features and metadata from the Million Song Dataset.
Generalization error during training was typically quite
low (less than 25%), and final tests on the dataset indi-
cated that both architectures may be capable of successful
classification over 80% of the time. Perfunctory tests on a
few extra songs outside the dataset resulting in the second
system performing significantly better, correctly classifying
7 of 12 songs with relatively difficult/obscure keys.

I. INTRODUCTION

When building a piece of music, to ensure that the
pitches used will flow and exist in consonance with one
another, the musician must have an understanding of
the underlying key of the piece. This “key” is based
upon a chosen underlying scale from which fundamental
relationships between certain notes give rise to sets
of intervals and chords that quite simply sound good
together. Within the context of this project, the key of a
piece will refer to both the mode (minor or major) and
the tonic note (C, Db, D, Eb, E, F, F#, G, Ab, A, Bb,
or B) of the fundamental scale.

Due to this property of music, one of the most valuable
pieces of information for a DJ or music producer when
mixing or remixing songs is the key of the piece they
are working with so that they are able to piece together
tracks that sounds good together. Furthermore, it is
of tremendous added benefit if they do not have to
spend time manually labeling each and every song in
their library, which can commonly include hundreds of
thousands of songs.

Within the industry, there are a handful of software
packages available that advertise the ability to automat-
ically detect the key of a song, however there exists a
relatively large trade-off between accuracy and price. For
example, a 2014 study by DJ TechTools found the most
accurate package to be Mixed In Key, with a hefty price

tag of $58, which gave an accuracy of 95% on their
test dataset [1]. The best free software was found to be
KeyFinder, with an accuracy of 77%.

As a result, the goal of this project is to use supervised
learning techniques to develop a classification system to
label any given song with its correct key and ultimately
produce a free software package that allows anyone to
analyze their own music library with high rate of success.
Ideally, a testing accuracy over 77% would be rather
remarkable.

To achieve this goal, two system architectures are
investigated: one which first classifies mode and then
classifies key, and another which first classifies the notes
used in the underlying scale then classifies mode and key
together. The input to the system is always a 12-length
average “chroma” vector which represents the relative
strength of every pitch in the chromatic scale throughout
the entire song.

II. RELATED WORK

Previous approaches to detecting musical key can be
essentially grouped into two categories: one in which
the algorithm attempts to develop a “tonal profile” of
the song then match it against a set of pre-defined
tonal profiles for each key, and another in which hidden
Markov models (HMMs) are learned for each key and
then the most likely key is determined from the HMM
given an input chroma sequence.

The tonal profile approach stems from psychology
research originally presented in 1982 by Krumhansl
and Kessler in which they developed a measure of the
musical importance of each note to each key [6]. To
do this, they had a musician play seven notes of a scale
followed by a random note and instructed participants to
rate how well the last note fit musically with the scale.
By averaging the ratings throughout many trials and
different scales, the study constructed what they called
a tonal profile for each key which contained relative
importance weights for each note. The profiles resulting
from this study, dubbed the “KK-profiles,” were found
to be structurally the same between keys in the same

mode–just transposed up or down accordingly. However,
between modes the structure was somewhat different. As
such, two fundamental profiles were given for each mode
which would then be used to represent any key.

To then do key-detection, an input song is pre-
processed into a chroma vector representation, then a
correlation function, such as the cosine similarity, is
used to find which key’s tonal profile is most similar.
However, this method has been found to be very sensitive
to the exact profile weightings used. Slight variations of
the KK-profile have been found to produce significantly
better or worse classification results [2].

The HMM approach first processes each song into
a sequence of chroma vectors over time. Here, the
characteristics of the modes are learned by training two
HMMs on labeled data, then 24 HMMs corresponding to
all the various keys are derived from the trained models
[7]. The key of the input song is selected corresponding
to the HMM that gives the highest likelihood of the
chroma sequence. To my knowledge, this is the only
other machine learning approach developed for detecting
musical key.

Both of these approaches suffer from common mis-
matches to keys a 5th up or down from the true key, due
to the close similarity in pitches between the underlying
scales.

III. DATASET

This project makes use of the Million Song Dataset
[3], which is a massive collection of features and meta-
data for one million songs, provided by The Echo Nest.
The data here of particular interest are the chroma
features and metadata for the key and mode of each song.

Note that due to the large size of the entire dataset
(>300GB), this project was only able to use a 10,000
song subset.

Unfortunately, the key and mode metadata is not
actually ground truth. Instead, each song is attributed a
confidence metric c ∈ [0, 1] indicating how confident the
dataset is in the classification given. This makes training
and testing a bit more difficult. To ensure enough data
was available for training, only data above a threshold of
c = 0.5 for both key and mode were used, which limited
the data to a subset of 3729 songs.

IV. FEATURE SELECTION

Because chroma features provide a representation of
the relative strength of each pitch class present at each
time window in a song, I choose to use features based
on this data for the key-classification system. These give
insight on the types and frequency of pitches used in

the song and should therefore directly relate to the key.
Accounting for the variable lengths of songs and avoid-
ing overly-complex feature representations, I choose to
average the chroma vectors given throughout the length
of the song. This produces a 12-length feature vector
that is then used as input to the system. Figure 1 below
demonstrates this process for one example song:

Fig. 1: Example of feature creation. Left) Last 100 chroma features
generated from the input song. Right) Average chroma vector to be
used as final features.

V. METHODS

Two system structures were investigated in this study.
The two are illustrated in Figure 3.

A. Architecture #1

The first architecture (Figure 3a), is based off the
tonal profile formulation discussed in Section II and
seeks to instead construct a model of tonal regions
using supervised learning. This method first seeks to
produce classification boundaries between minor and
major modes, based on the understanding that tonal pro-
files differ significantly in structure (weightings) between
modes. Once the mode of the song is classified, the
system then attempts to classify the actual pitch class
(key), with the belief that each tonal profile within a
given mode is simply some transpose of the others and
therefore the tonal regions should be separable.

For both layers of classification, both multi-class
support vector machine (SVM) and multinomial logistic
regression (softmax regression) models were tested. As
will be detailed further in Section VI, experimental
results indicate that the SVM model works best for
classifying the mode, while the softmax model works
best for classifying the pitch class.

The SVM model is trained to distinguish between two
classes y ∈ {−1, 1} by minimizing the cost function:

J(α) =
1

m

m∑
i=1

Lhinge

 m∑
j=1

αjK(x(i), x(j)), y(i)

Which represents the average loss over all m training
examples using the hinge loss function defined as:

Lhinge(z, y) = [1− zy]+

2

The kernel function K(x, z) is chosen to be the radial
basis function:

K(x, z) = exp

(
−1

2
‖x− z‖2

)
The cost function J(α) is iteratively minimized using
gradient descent methods.

In order to control overfitting, regularization was em-
ployed by adjusting the box constraint. Another tech-
nique called standardization was also used which centers
and scales each dimension of the training data by the
weighted column mean and standard deviation.

Note that in order to use the SVM model—which
fundamentally only distinguishes between two classes—
with multiple classes, one SVM is trained on each class
vs. all other classes which then returns a score indicating
how likely the input is representative of that particular
class or not. This formulation therefore allows us to use a
collection of binary classification SVMs to classify more
than two classes by selecting the class corresponding to
the highest score among all returned by the SVMs.

The softmax regression model is directly trained on K
total classes by using maximum likelihood estimation on
the likelihood function:

L(θ) =

m∏
i=1

(
K∏

k=1

P (y(i) = k|x(i); θ)1{y
(i)=k}

)
Where the probability term is:

P (y(i) = k|x(i); θ) = exp(θTk x
(i))

1 +
∑K

j=1 exp(θ
T
j x

(i))

This produces K−1 classification vectors θi (represented
altogether in the above representation by the symbol θ
without subscript). Note that 1{x = y} represents the
indicator function. We iteratively optimize using gradient
descent methods on the log of the likelihood function.

B. Architecture #2

The second architecture tested in this project (Figure
3b) was formulated using the fact that each key is based
on some underlying set of eight notes, regardless of
whether or not their particular usage is representative of
the same scale. For example, the C major and A minor
scales, shown in Figure 2, contain the same notes, but
actually represent different keys due to the different tonic
notes and corresponding chords. The hypothesis for this
formulation is that it may be possible to first classify an
input into one of 12 dual-key classes which share the
same eight notes, then from there attempt to perform a
more intricate classification to determine which of the
two possible keys the song truly represents.

(a) C major scale

(b) A minor scale

Fig. 2: Illustration showing how two different scales may contain the
same pitches.

TABLE I: Major and minor keys which contain the same notes

Major Minor

C A

Db Bb

D B

Eb C

E Db

F D

F# Eb

G E

Ab F

A F#

Bb G

B Ab

To do this, a softmax regression model is first trained
on the 12 classes which represent keys containing the
same eight dominant notes. Each includes one major
and one minor key, summarized in Table I. Next, one
logistic regression model (softmax with only two classes)
is trained for each of these dual-key classes in an attempt
to distinguish the two possible keys within each. This
produces a total of 12 new classifier models.

Note that due to the limited amount of data available,
an SVM model classification model is not considered for
this second approach. Preliminary results from testing
architecture #1 indicated that softmax should be used in
this case in order to best avoid overfitting.

VI. RESULTS

A. Architecture #1

All models were trained and tested using only data
possessing a confidence value above 0.5. This provided

3

(a) System architecture #1 (b) System architecture #2

Fig. 3: Illustrations of the two system architectures investigated in this project.

TABLE II: SVM vs softmax performance comparison for Arch. #1

Classifier Model Train Error (%) Test Error (%)

Mode
SVM 4.885 14.504

softmax 24.257 25.424

Major Mode Key
SVM 6.615 37.135

softmax 16.981 25.472

Minor Mode Key
SVM 6.617 21.111

softmax 17.955 21.389

2881 major key and 848 minor key songs, for a total
data subset of 3729 songs. Training was performed on
a randomly ordered selection of 75% of the data, while
a 25% cross-validation set was left out to be used for
testing.

A comparison between the results for the SVM and
softmax regression models for each classifier in the
system are shown in Table II. The results indicate that
for the mode classifier (the first layer in the system),
the SVM performs significantly better on the test set,
misclassifying over 10% less examples. Using these
results, the SVM is chosen as the model for mode
classification. Note that the SVM was trained several
times with different regularizing box constraints and the
optimal was found to be a value of 1.0, which was then
used for all the results reported in this paper. The most
significant influence of this regularizing adjustment is
that the underrepresented minor mode data is effectively
given more importance relative to the more common
major mode data, allowing both to be classified equally
well. This is evidenced by the equivalent colors in each
column of the confusion matrix in Figure 5.

On the other hand, while the test error is roughly
equal between the SVM and softmax results for major
mode key classification, the softmax model performs
significantly better for minor mode key classification—
again with over 10% less misclassifications on the test
set. Due to this result, the softmax model is chosen as
the model for both major and minor mode classification.
The confusion matrix for the trained model for major

Fig. 4: Error per training iteration for
Arch. #1 SVM mode classifier. Left)
Training error. Right) Testing error.

Fig. 5: Confusion matrix for
Arch. #1 SVM mode classifier
(normalized over columns).

Fig. 6: Confusion matrix for Arch. #1 softmax major key
classifier (normalized over columns).

key classification is given as an example in Figure 6.

B. Architecture #2

The second system architecture was trained using the
same data subset and cross-validation testing technique
as the first. Training of the dominant note dual-key
softmax classifier resulted in a training error of 25.706%
and a testing error of 26.073%. The corresponding
confusion matrix is shown in Figure 7. Training the
second-layer logistic regression key classifiers typically
resulted in testing error between about 6 and 10%, a quite
remarkable and endearing result. The confusion matrix
for the C major vs Ab minor model is shown in Figure
8 as one example.

4

Fig. 7: Confusion matrix for Arch.
#2 softmax classifier between
dual-key classes (normalized over
columns). Labels refer to major key
of class.

Fig. 8: Confusion matrix for
Arch. #2 logistic reg. classifier
between C major and Ab minor
(normalized over columns).

C. Comparative Performance

To fully test and compare each system architecture,
all data from the dataset with mode and key confidences
above various thresholds were sent completely through
both systems and compared with their labels. Results
from this are shown in Figure 9.

Fig. 9: Performance comparison of system architectures. The number
of valid data tested at each threshold is shown next to each point.

While these results appear to imply that both systems
perform just about equally well, I was able to run a
handful of tests with 12 randomly selected songs from
the DJ TechTools survey [1] of which ground truth keys
are given. Note that most of these were in relatively
uncommon [4] minor keys (e.g. G min, C min, F min)
characteristic of obscure electronic music. The MAT-
LAB Chroma Toolbox [5] was used to extract chroma
features from the songs. In these tests, summarized in
Table III, architecture #2 performs significantly better.

VII. DISCUSSION

The results given in Section VI illustrate that both
architectures were quite capable of low generalization
error during training. Figure 9 appears to indicate that

TABLE III: Results on 12 songs from DJ TechTools survey.

Architecture Correct (%) Off by 5th (%) Off by mode (%)

#1 0.000 8.333 25.000

#2 58.333 16.667 0.000

both systems are actually quite successful in estimating
the correct key of music in the dataset, as both attain
testing error rates below 20% when confidence on the
key and mode data is high (c ≥ 0.6). This is a percentage
comparable to the error of the best free key-detection
software available [1].

However, definite conclusions become difficult to
make after viewing the results from testing on new
data outside the dataset (Table III). Still, it is clear that
system architecture #2 performs very well regardless,
since even on the new data it is capable of perfectly
estimating the key of 7 of the 12 songs. It is important
to note, though, that all but one song in the newly tested
data were in somewhat obscure minor keys—keys which
were relatively underrepresented in training. Therefore
the results should not necessarily be considered repre-
sentative of the systems’ ability to correctly classify all
keys. This makes the results from architecture #2 all the
more impressive. It would be very interesting to do more
testing in the future on a larger variety of keys, though
reliable truth data would need to be acquired.

Interestingly, even the systems developed in this
project appear to still have difficulty with keys differing
by a 5th, which is evident by the bright off-diagonal
strips in the confusion matrices of Figures 6 and 7.
However, it is unclear if this is actually an artifact of
the imperfections of the training data. Future training
using higher confidence (or ideally true) data should be
done to determine if this alleviates the issue at all.

VIII. CONCLUSION

This paper proposes two key-estimation system ar-
chitectures based on supervised learning principles and
music fundamentals which are able to make predictions
using a chroma feature vector representation of a query
song. Though data from the dataset was somewhat
unreliable, results appear to at least indicate that archi-
tecture #2 performs very well, achieving a total accuracy
estimated to be somewhere above 58.333%.

REFERENCES

[1] “Key Detection Software Comparison: 2014 Edition.” DJ Tech-
Tools. N.p., 14 Jan. 2014. Web. 20 Nov. 2016.

[2] Sha’ath, Ibrahim. Estimation of key in digital music recordings.
Diss. Masters Thesis, Birkbeck College, University of London,
London, UK, 2011.

5

[3] Bertin-Mahieux, Thierry, et al. “The million song dataset.” ISMIR.
Vol. 2. No. 9. 2011.

[4] Eliot Van Buskirk. “The Most Popular Keys of All Music on
Spotify.” Spotify Insights. Spotify, 2015. Web. 16 Dec. 2016.

[5] Ewert, Sebastian. “Chroma Toolbox: MATLAB implementations
for extracting variants of chroma-based audio features.” Proc.
ISMIR. 2011.

[6] Krumhansl, Carol L., and Edward J. Kessler. “Tracing the dynamic
changes in perceived tonal organization in a spatial representation
of musical keys.” Psychological review 89.4 (1982): 334.

[7] Peeters, Geoffroy. “Musical key estimation of audio signal based
on hidden Markov modeling of chroma vectors.” Proceedings of
the International Conference on Digital Audio Effects (DAFx).
2006.

6

