
ColorNN Book: A Recurrent-Inspired Deep Learning
Approach to Consistent Video Colorization

Divyahans Gupta
Stanford University

Stanford, California 94305
dgupta2@stanford.edu

Sanjay Kannan
Stanford University

Stanford, California 94305
skalon@stanford.edu

ABSTRACT
Can computers add meaningful color to black-and-white
videos? While deep neural networks have achieved state-
of-the-art performance on coloring still images, naive ex-
tensions to video have proven unsatisfactory. The frames of
a video are neither independent of one another, nor should
they be colored in this way. In this paper, we use the tempo-
ral context of video frames to enhance the subjective visual
quality of their colorings.

Author Keywords
Video Colorization, Transfer Learning, Convolutional Neu-
ral Networks, Recurrent Neural Networks

1. INTRODUCTION
The image colorization problem has been the subject of
much interest in the research community. Specifically, we
define the problem as follows: Given a grayscale represen-
tation of a digital image, what is the most intelligent as-
signment of colors to grayscale pixels? (See Figure 1 for an
instance of this task.) Absent a reference coloring, there is
clearly no answer that is objectively the most intelligent.

Figure 1: The original and colorized versions of
Dorothea Lange’s Migrant Mother (1936), taken in
California during the Great Depression.

However, some colorings (green trees and blue skies, for
instance) carry a degree of inherent plausibility due to the
consistency of their texture or structure. We intuit this
judgment based on our experiences seeing color in the real
world, suggesting that computers can do the same. We can
imagine that a computer, given a sufficiently large corpus of
colored images, would learn an internal concept of plausible
colorings.

In fact, recent advances in state-of-the-art deep neural
networks (accompanied by the relevant gains in comput-
ing power) are making this approach to visual intelligence

not only possible, but commonplace. Convolutional neural
networks (CNNs, or ConvNets) have contributed in large
part to this phenomenon; their sparse, localized structure
presents benefits both for increasing computational feasibil-
ity as well as capturing the latent geometric structures in
an image.

The yearly ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) has provided a perennial high-water mark
on the related task of image classification. ConvNets have
become a staple of winning submissions, following the record-
shattering work of Krizhevsky et al. [1] in 2012.

Our work begins by surveying the landscape of ConvNets
as they pertain to the image colorization problem. We then
draw on the ideas of a few other papers in developing our
own neural network for this purpose. Finally, we turn our
attention to a natural extension of the image problem: con-
sistent video colorization.

Thus far, efforts to colorize video have been marked by a
per-frame approach, independently colorizing the still shots
in a filmed sequence. While this approach is theoretically
valid, current image colorization networks are far from per-
fect, and even minor deviations in color between frames
appear jarring in tandem to viewers.

Furthermore, many scenes have a number of plausible col-
orings. A T-Shirt might be red, green, blue, or any number
of other colors. In a filmed sequence, however, a T-Shirt in
one frame is probably the same T-Shirt in the next dozen
frames.

To this end, we note that each frame of video does not
exist in a vacuum, nor should its colorization. Given a plau-
sible frame coloring at some time t, any coloring of frame
t + 1 should ideally maintain visual consistency with its
predecessor. Informally, the same objects should have the
same colors between two frames, even if these objects were
somehow displaced or transformed in between.

This temporal dependency suggests the use of recurrent
neural network (RNN) architectures as a modeling tool. In
recent times, Hochreiter and Schmidhuber’s long short-term
memory model (LSTM) [2] has emerged as a robust way to
implement recurrent connections in a neural network. As its
name suggests, it is sensitive to both short-term correlations
in sequential data (e.g. frame t and frame t + 1) as well as
longer-term properties.

Even without an explicitly recurrent network architec-
ture, we can still design simpler coloring networks to require
a running video context as input. This approach results in
models with many fewer trainable parameters, making de-
velopment and iteration computationally tractable.

Our contribution to this area of research is progress on
the problem of automated video coloring. Here, we present
an empirical analysis of a recurrent-inspired convolutional
neural network, and assess its performance on a selected
corpus of media.



2. RELATED WORK
In practice, it is difficult to build a sufficiently complex net-
work architecture for image-to-image transformation. Such
a network would need to first understand the diversity of
macro-level concepts in an image, and then on top of that
propagate per-pixel inputs to generate a locally-sensitive
output.

Rather than approach this task directly, then, several
papers on the topic have employed transfer learning. In-
tuitively, well-studied tasks like image classification often
share overlapping sub-problems with less-popular tasks like
image coloring. These include forming a coherent internal
representation of an image that is high in information and
low in redundancy.

Since leading image classification networks have weights
and architectures for public download, it is possible to co-
opt pre-trained layers from these networks for external use.
In a blog post from January 2016, Dahl [3] extracts hyper-
columns from the VGG-16 network, and uses their concate-
nated outputs as inputs to his coloring network. (Hyper-
columns are simply the activations above each input pixel
in the layers of a CNN; see [4] for more details.) VGG-16
[5], a top contender in ILSVRC 2014, was chosen in this
case for its powerful yet simple representation of images.

However, the most successful colorization algorithms to
date have not used transfer learning, instead opting to con-
duct end-to-end training on large image repositories (the
most common of which is ImageNet). With total control of
their architectures, these approaches design each layer and
train each parameter to be coloring-specific.

Most recently, Zhang et al. [6] paired their CNN with
a class rebalancing scheme that weights rarer and more vi-
brant pixel colors more heavily in an effort to avoid de-
saturation. Meanwhile, Iizuka et al. [7] recently demon-
strated state-of-the-art results with a CNN that fuses local
as well as global image data for coloring. Both networks
were trained from scratch: the former on ImageNet, and the
latter on MIT’s Places2. Notably, Zhang et al. computed
classification by quantizing the color space, while Iizuka et
al. computed a regression loss.

Despite the recent progress in image colorization, video
coloring remains an open problem. Zhang et al. used their
network to color several videos with a frame-by-frame pro-
cedure, and these in fact suffer from the color inconsistencies
we describe. While applying lessons from image colorization
attempts, we endeavor to solve these inconsistencies using
a custom recurrent-inspired architecture.

3. METHOD
We first describe a color model, which operates exclusively
on still images with no temporal context. While this model
is wholly self-contained, we subsequently address a superset
of this model, which conditions a frame’s coloring on the
colorings of predecessor frames (the consistency model).

3.1 Color Model
Many of the models described above are not true image-
to-image networks, in the sense that they do not take a
grayscale image and output an RGB-colorized image in their
last layer. Rather, they typically use a perceptual color
space like YUV [8], which separates color into a brightness
Y (or luma) channel, and two (U, V ) color channels.

Conceptually, this choice has two advantages. First, when
plotted in the (U, V ) color plane, the Euclidean distance be-
tween any two colors approximates their perceptual similar-
ity. As a result, color prediction can be reasonably framed
as a regression problem.

Figure 2: Taken from our test set, the top image is
the ground truth for the given scene. The output of
the color model is displayed below. While our result
is not quite as vivid as the original, we manage to
find a pretty plausible coloring. We even preserve
the mountain’s reflection in the lake.



Figure 3: We also experimented with training on
larger data sets, including substantial amounts of
foliage. The top image is the ground truth for the
given scene, while the bottom image is our color
model’s output. This example demonstrates the
ambiguities inherent in coloring images. Both red
and green are valid colors for foliage textures when
no additional context is present. In this case, our
model has probably seen more instances of green
foliage.

Second, the separation of lightness and color channels
suggests a model’s interface. The Y channel becomes a
model’s input layer, while the model aims to predict U and
V . We frame our problem in precisely this way. Final re-
construction of an image happens outside of the model, by
concatenating predicted color channels with known bright-
ness values.

Next, we also chose to employ transfer learning. Our
resources made it computationally infeasible to train end-to-
end networks on large datasets, as in Zhang et al. and Iizuka
et al. Specifically, we constructed an architecture (inspired
by Dahl) that inherits layers from a VGG-16 model trained
on ImageNet (see Figure 4). Like Dahl, we chose VGG-16
due to its simplicity and success in ILSVRC 2014.

Even though VGG-16 was trained on color images, we
hypothesized that its convolutional layers would maintain
most of their activation behavior on grayscale images. The
discriminatory properties of VGG-16’s layers are utilized
by our added layers to apply appropriate colorings more
quickly and accurately than if we trained a model from
scratch. For example, a convolutional layer in VGG-16 that
discriminates foliage would help our added layers learn to
color the image green. We hypothesized that VGG-16 might
drastically decrease the training time needed to obtain re-
alistic colorings.

As in Dahl’s case, our architecture forms residual connec-
tions between the convolutional layers from VGG-16, and
the convolutional layers we added above the model. A no-
table discrepancy between the architectures lies in our final
layers. While Dahl’s model outputs a 224 × 224 × 2 ten-
sor and computes a Euclidean distance loss in the U and V
color axes, we compute per-pixel Softmax probabilities over
n color bins per axis. We then track the summed categorical
cross-entropy loss based on the correct bin for each pixel.

While we experimented with regression-based models, we
ultimately framed the problem as a classification task. Us-
ing a regression loss like the Euclidean norm might yield
desaturated colorings, as explained in Zhang et al. Fur-
thermore, according to Karpathy’s deep learning notes from
Stanford CS231N [9], classification losses are easier to op-
timize for, and are much more stable compared to regres-
sion losses. Empirical and visual tests between a regression
model and a classification model further validated this de-
cision.

Finally, we limited the scope of our dataset to water fea-
tures (coasts, lakes, and other seascapes). While we would
have preferred to train our model on larger, more diverse
datasets such as ImageNet, the computational resources
necessary to do so were out of our reach. The images in our
dataset were obtained from the McGill Calibrated Colour
Image Database, MIT CVCL’s Urban and Natural Scene
Categories, and MIT CSAIL’s SUN data set. It is our hope
that this paper will encourage further work with greater
computational resources unavailable to us.

3.2 Consistency Model
Having developed a working color model, we needed some
way to inform our network of prior context in a sequence of
frames. We looked first to the canonical modeling tool for
this purpose: recurrent neural networks.

Unlike a traditional feed-forward neural network, the neu-
rons in a recurrent network preserve a selective temporal
memory, and output different things based on the input or-
dering of examples. For instance, knowing that a pixel (x, y)
was colored red in the recent past, a correctly-designed re-
current color model would be more likely to color the same
pixel red in subsequent frames (or not necessarily, if the
model determines that frames are changing quickly).



Intuitively, we should be able to make the pixel neurons
in our convolutional layers stateful, and then pass in an
ordered sequence of frames for temporal context. Unfortu-
nately for training, making every neuron in a 2D convolu-
tional layer recurrent blows up the number of parameters.

There is a small but growing body of literature on dealing
with this issue in the context of image-to-image models, but
actually solving this problem was beyond the scope of our
research.

Instead of using recurrent nodes in our architecture, we
opted to explicitly pass in our knowledge of previous frames
when coloring the still image at a given time step. More con-
cretely, our consistency model runs the Y -channel input of a
frame t through the color model, and takes in the estimated
(U ′, V ′) coloring of the previous frame t′ as additional in-
put.

Next, we take the final convolutional layers from running
the color model on frame t, and concatenate them with a
convolution of channels U ′ and V ′ from frame t′. We apply
two convolutional layers to this concatenation, and finally
calculate binned Softmax probabilities as in the color model.

In this way, the consistency model presented here is a
sort of truncated RNN. We use the previous frame’s color
context to inform the coloring of the current frame, rather
than a weighted context over several prior frames.

As our results indicate, even a hint of context not only
improves consistency between frames, but also, given an ac-
curate coloring of the previous frame, corrects for a weaker
color model. Our color model is hardly competitive, but our
results improved drastically when we fed the ground truth
coloring of the prior frame as context.

We should note that our frames were captured at a rate
of 30 frames per second (FPS). At this frequency, the dif-
ferences between subsequent frames can be minimal, and
our model risks learning an identity mapping of the previ-
ous frame’s coloring. Further work is required to explore
this phenomenon, but we hypothesize that a slightly lower
frame rate could preserve temporal consistency, while learn-
ing more nuanced mappings of time.

4. RESULTS
Here, we present results for the color model and the overall
consistency model separately.

4.1 Color Model
Our color model was built in Keras, running on top of a
Theano backend. Keras comes with weights for the VGG-
16 network trained on ImageNet, so we loaded these into
the appropriate layers of our model. At training time, these
parameters were marked as frozen, and losses were not back-
propagated to the VGG-16 layers.

We used our color model with 4000 images of water fea-
tures (see Methods for more specific details). Of these, 3000
were assigned to our training set, 500 were assigned to a val-
idation set, and 500 were assigned to a test set.

We quantized the U and V color spaces into n = 30 dis-
crete bins. We employed the state-of-the-art Adam opti-
mizer and ran our training for over 100 epochs with a batch
size of 15. However, our model began to overfit after epoch
16, so we report the data from that epoch.

In the end, our model achieved a total training loss of
3.384. On the training set, we correctly classified 37.362
percent of pixels in the binned U dimension, and we cor-
rectly classified 33.908 percent of pixels in the binned V
dimension.

Meanwhile, we achieved an final test loss of 3.541. On the
test set, we correctly classified 36.198 percent of pixels in
the binned U dimension, and we correctly classified 32.474

Figure 4: Our color model architecture. The nodes
at the top left of the figure represent the VGG-
16 network, which is connected at various convolu-
tional layers to our network.



Figure 5: The bottom image is a ground truth frame
from the video test set. In order, the top image is
its grayscale representation, the second image is the
output of our color model (with no temporal con-
text attached), and the third image is the output
of our consistency model (with color context from
the previous frame). The consistency model pre-
serves the ocean’s color between this frame and its
predecessor, resulting in a more faithful coloring.

percent of pixels in the binned V dimension. See Figures 2
and 3 for typical outputs of our model.

4.2 Consistency Model
Since the consistency model uses the color model as a sub-
component, we pre-trained a color model and then froze its
weights for use in the consistency model. (This is similar to
what we did before with VGG-16.)

We used our consistency model with 10 videos of coastal
scenes, each with 300 frames (10 seconds at 30 FPS). Of
these, 7 videos went to our training set, 3 went to a valida-
tion set, and 3 went to a test set.

After only ten epochs, we achieved an final test loss of
3.241. On the test set, we correctly classified 34.203 per-
cent of pixels in the binned U dimension, and we correctly
classified 75.345 percent of pixels in the binned V dimen-
sion. See Figure 5 for a comparison of model outputs.

5. NEXT STEPS
Future work will focus on improving both components of our
project, where practical constraints hampered our progress:
creating a more robust color model, and using truly recur-
rent architectures for temporal consistency. We believe that
solutions to the latter component will pave the way for the
next generation of autonomous agents, which must under-
stand and react to large amounts of spatial-temporal data.

6. ACKNOWLEDGMENTS
This research was conducted for the final project assignment
in Stanford University’s CS 229 course. We would like to
thank Andrew Ng, John Duchi, and the rest of the teaching
staff for their patience and expertise. We would like to
especially thank our project TA Nihit for his advice and
encouragement.

7. REFERENCES
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton.

Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[2] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural computation,
9(8):1735–1780, 1997.

[3] Ryan Dahl. Automatic colorization, 2016.

[4] Bharath Hariharan, Pablo Arbeláez, Ross Girshick,
and Jitendra Malik. Hypercolumns for object
segmentation and fine-grained localization. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 447–456, 2015.

[5] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[6] Richard Zhang, Phillip Isola, and Alexei A Efros.
Colorful image colorization. arXiv preprint
arXiv:1603.08511, 2016.

[7] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi
Ishikawa. Let there be color!: joint end-to-end learning
of global and local image priors for automatic image
colorization with simultaneous classification. ACM
Transactions on Graphics (TOG), 35(4):110, 2016.

[8] GMRB Black. Yuv color space. Communications
Engineering Desk Reference, 469, 2009.

[9] Andrej Karpathy. Course notes, 2016.


	Introduction
	Related Work
	Method
	Color Model
	Consistency Model

	Results
	Color Model
	Consistency Model

	Next Steps
	Acknowledgments
	References

