Human Activity Recognition via Cellphone Sensor Data

Wei Ji, Heguang Liu, Jonathan Fisher

Abstract— The purpose of this project is to identify human
activities while using cell phones via mobile sensor data. We
collect 2085 data samples, which includes 3-axis acceleration,
angular velocity and orientation sensor data, from 4 volunteers
using the MATLAB Mobile package. After cleaning, interpolat-
ing, and FFT, we get 135 raw features, and we further reduce
the feature number to 21 via feature selection. After comparing
the results of different models, e.g. Decision Tree, SVM, KNN,
we successfully build an Ensembled Bagged Trees Model which
gives 95.7% prediction accuracy over 626 test data on 9 human
activities (walking, running, driving, typing, writing, talking,
laying, sitting, standing).

I. INTRODUCTION

Mobile has become a necessity in people’s daily life in
recent few years. In 2015, the mobile ecosystem had 4.7 bil-
lion unique subscriber and generated more than $3.1 trillion
revenue, which is 4.2% of the global GDP. So the ability to
identify user activity and behavior in real time via cellphone
senor data is becoming extremely useful to a variety of
applications: medical companies can use sensor data and user
activities to keep track of bio-signals, tech companies can
feed news, music or ads when users are performing different
activities, e.g. sitting, running or driving, retail companies
can use customer behaviors combined with GPS data to guess
users propensity to consume. Using motion sensor data, like
accelerator, gyros, orientation etc., to identity user behavior
had been tried before by [1] [2] [3] [4] [5]. The experimental
setup of [1] [2] [3] assume that the sensors are attached to the
user waist or back pocket, which creates a somewhat artificial
scenario. [4] and [5] has considered real-time scenario, which
assumes cellphone are at hand or inside of pocket, but [4]
only achieve 80% accuracy and [5] only achieved 91.15%
accuracy due to using only acceleration data. In this paper
we’ll remove the sensor attachment constraint. We assume
a more real scenario where the user is holding the phone
and also using all available cellphone sensor data to do
prediction.

II. DATA SET
A. Data Collecting

MATLAB Mobile supports acquisition of data from built-
in sensors on iPhone and Android Phones and also provides
remote access to the script and data on the laptop with the
same MATLAB session or MathWorks Cloud. MATLAB
Support Package for Android/iOS sensors provides the dis-
playing, logging, querying and sending sensor data.

Thus, we acquire approximately 15000 seconds of sensor
data [Table 1] at 50Hz sample rate from 4 volunteers by
taking the following steps:

TABLE I: Raw Sensor Data

Sensor Features

3-axes acceleration data

3-axes gyroscopes for rotational motion
3-axes magnetic field

azimuth, pitch, and roll

latitude, longitude, altitude

Acceleration
Angular Velocity
Magnetic Field
Orientation
Position

1) Configure MATLAB Mobile on the mobile device.
Connect mobile device to Cloud.

2) Load collecting script to MathWorks Cloud, so the
MATLAB Mobile has access to the script.

3) Tag collecting script for the performing activity before
recording.

4) Run the script which initialize a mobiledev object,
enable sensors, set sample rate to 5S0Hz and start
recording timer.

5) Save the logging results to Cloud after recording.

Fig. 1: Flow of work:

B. Data Preprocessing

We have several challenges when we process data. First
challenge is when we identified during data collection is Sen-
sors recording duplicate data samples. The Second challenge
is that different sensors recording are not synchronized and
the time range is not accurate either. Sample rate of sensor
is not exactly 50Hz and not consistent. The time internal
ranges between [0.018, 0.022].

To solve these problems, we

1) Cleaned the sensor data by de-duplicate rows and sort
by timestamp.

2) We divide each recording sample into 0.02%128=2.56
second segments. And each segment is used as a data
point.

3) Only choose the data sample with overlapping time
span cross all sensors.

4) To make all the sensor data synchronized at the exact
same sample rate, we interpolated and re sampled
the data. We tried several interpolation methods like:
Nearest Neighbor, Linear, Cubic, and Spline. Spline
gives the best result, because it doesn’t over smooth
the sample data like cubic interpolation or sharpen the
sample data like linear.

III. FEATURES

A. Sensors selection

After we examining the collected data we realized that the
position data and magnetic field data is independent of user’s
behavior. So we have 9*128 raw features on time domain.

B. Feature Transformation

We expect some of the collected data to be periodic (with
unknown initial phase), like the data collected while walking,
going upstairs and going downstairs, and some to be random,
like driving. This is why looking at the spectral components
of the sampled data makes much more sense than looking
at raw data. After converting each sensor 128 time samples
using FFT we examined the top 10 spectrum give the best
performance (frequencies in the range 0 - BW) on several
ML algorithm as presented in the following subsection. Fig.
2 verifies our assumption - it can be seen that the blue,
yellow and purple lines have pics at spectral components at
frequencies greater than zero while the red and green lines
don’t. Thus we have 9*10 features. We also evaluate the
covariance of every 2 sensors, which gives 45 features.

C. Feature Selection

135 features is still too many to make algorithms run
efficiently. Large feature number can potentially lead to a
very complex model, which tends to over-fit training data.
We adopt SVD and forward feature selection to reduce
feature dimensions.

1) SVD reduce feature dimension: Running a series of
SVD on a bagged tree model shows that Top 7 features can
preserve 95% of total energy, and give a 9.3% test error. Top
22 features can preserve 99% of total energy, which gives
6.6% test error. Top 33 features can preserve 99.94% of total
energy, and give a 6.4% test error. Fig 3.

2) Forward selection reduce feature dimension: Running
a series of forward feature selections on the bagged tree
model shows that, the 18, 21, 27-feature model overplay
135 feature model. The 21 feature model achieves lowest
test error 4.3% at number of trees larger than 300. This is
better than the performance of 33 features set using SVD
feature selection. Work shown in Fig. 4

Accelerometer x __Accelerometer y __Accelerometer z
200 200 200

T .
100 i\ 5 i 100 | i
“‘4:; NAVA {'/“ e -\\ﬁ .

0 0

5 10 15 20

50

e S o=
5 10 15 20
Orientation y

5 10 15 20
Orientation x

Orientation z

3000 3000 3000
2000 {{} 2000 2000
1000 \(\ 1000 1000

S Pl A
5 10 15 20 5 10 15 20

0 == =
5 10 15 20

Fig. 2: The average FFT Spectrum of different sensors
blue: walking, red: driving, yellow: walking upstairs,
purple: walking downstairs, green: sitting.

Solid curve: average of all sample data

dashed curve: 1o clearance band.

SVD Comparison

0.1 1
0.095 - 0.99
0.09 | 0.98

o

()

0.085 - 0.97 £

5 ko)

= g

Y008t 0.96 ¢

ko [J]

‘v e

= ©

0.075 | 0.95 =

©

>
0.07 | 0.94
0.065 | 10.93
0.06 0.92

5. lb 1‘5 26 2‘5 36 3‘5 4‘0 4‘5 50
Number of Features

Fig. 3: Feature Selection using SVD method : blue curve

shows test error using principle components with Ensemble

Bagged tree classification. Red curve shows how much

variance is explained by these principle components.

Feature Selection Comparison
T

- 18 features test error
——21 features test error

27 features test error
0.09 - "

—— 135 features test error| |

0.08

0.07 -

Test Error

0.06 -

0.05 -

0.04 4 t
10t 102 103
Num of Trees

Fig. 4: Feature Selection using Forward Selection method:
blue, red, yellow, purple curve shows test error using
18,21,27,135 features with Ensemble Bagged tree classifi-
cation.

1IV. METHODOLOGY
A. Model Comparison

We collect, process, and select 21 features on four users
performing nine different activities and try to find the
best classification model. We compare K-Nearest Neigh-
bors(KNN), Support vector machine(SVM), and Decision
Tree method using holdout validation.

1) K-Nearest Neighbors: The kNN algorithm predicts
according to the k “nearest” neighbors in feature space. We
compare kNN models with different distance function and
k number in Fig. 5. However, because of the large variance
between different sensors, we do not get a good result from
this method. Results show that performance of the Euclidean
and Cityblock distance functions are better than performance
of Chebychev distance. The best result we get for the kNN
method is 7%.

KNN Distance C

euclidean distance test error
chebychev distance test error
cityblock distance test error

= euclidean distance train error
=== chebychev distance train error
cityblock distance train error

Test Error

Fig. 5: KNN Model Comparison: training(solid line) and
test(dashed line) error of distance computed by Eu-
clidean(blue), Chebychev(red), Cityblock(yellow) method.

2) Support Vector Machine: The SVM algorithm predicts
by computing the hyperplane with largest margin as the clas-
sification separation plane. The SVM algorithm only works
with binary classifiers. To allow multi-class classification, we
use one-vs-one method to create k(k-1) binary classifier with
SVM, where k is the number of labels. Also to allow mis-
classifications, we add a penalty factor C to the cost function.
The cost function to minimize for SVM is formula 1

1
glill(i <w,w > —l—CZsZ)

S (1
st yi(<w,x; >4+b)>1—s; and s, >0

. A larger C value increases the weight of mis-classifications,
which leads to a stricter separation. This factor C is also
called box constraint. We compare SVM models with dif-
ferent kernel and different C value in Fig. 6. Linear kernel
outperforms polynomial and rbf kernel. The best result we
get for the SVM method is 7%.

SVM Kemal Comparison
T T Ty

terror
polynomial kemal test error
b kernal test error

i
bt kernal train error

Test Error

10° 10 10
BoxConstraint G

Fig. 6: SVM Model Comparison: training(solid line) and
test(dashed line) error using linear kernel(blue), polyno-
mial kernel(red), Gaussian radial basis function(rbf) ker-
nel(yellow).

3) Decision Tree: Decision Tree predicts using a tree-like
graph of decisions. However, according to the complexity
of the data features, a single Decision Tree performs really
badly. We ensemble decision tree models with Bagging
and boosted method. We try to optimize its behavior with
controlling the depth and width of the tree, number of split
and number of trees. Results are shown in Fig 7. Both
methods are able to give a better results than the kNN and
SVM methods. We find the optimized algorithm is Bagged
Trees with Number of trees bigger than 300 assembled using
formula 2

B
frese) = £ 3 F) @
b=1

. To reduce the variance of bagged tree, we use random forest
algorithm and consider 13 features out of 25 features on each
step of splitting the tree. The best result so far at test error
equals 5%.

Tree Model Comparison
0.09 T

Bagged Tree test error
Boosted Trees test error | |

0.08

—==Bagged Tree train error
—==Boosted Trees train error

Test Error

0.03 p
0.02F %

0.01 - \

S~a
i~

10t 102 10°
Number of Trees

Fig. 7: Tree Model Comparison: training(solid line) and
test(dashed line) error using Ensemble Bagged Tree(blue),
Ensemble Boosted Tree(red).

V. EVALUATION AND RESULT

The optimal model - ensemble Decision Tree with bag-
ging method 21 features, achieves approximately 5 percent
classification error for the four users. The confusion matrix
and ROC curve of the optimal model is shown in Fig. 8, and
Fig. 9

1. Walking| 266

2. Running 131 1

3. Driving 1 308

4. Typing [2 1 23 7

5. Writing 175 3

True class

6. Talking| 1 183 6

7.Laying| 2 1 1 1 7 280 1 2

8. sitting| 4 1 1 225 17

9. Standing 5 1 1 9 4 1 18 167

2
2 s, ¢ 2 2
% “o “ % %

Predicted class

Fig. 8: Confusion Matrix of Ensemble Bagged Tree model,
number of trees = 300, with cross validation.

Walking Running Driving
Typing Writing Talking
Laying Sitting Standing

Fig. 9: ROC Curve of 9 activities.

From the Confusion Matrix and ROC, we can conclude
that our learning algorithm separates most labeled activities
well. The worst two performance classes, standing and
sitting, have a true positive rate of 81% and 91%. Other
classes all have true positive rates larger than 95%.

However, we also discover the following challenges:

1) Less intensive activities, sitting and standing are more

TABLE II: Model Comparison

Model Test Error
Decision Tree, Bagged Random Forest 4.3%
Decision Tree, Gentle adaBoosted 6.6%
SVM, linear kernel 6.9%
SVM, polynomial kernel 9.1%
SVM, rbf kernel 8.0%
kNN, Euclidean distance 7.0%
kNN, Chebychev distance 9.3%
kNN, CityBlock distance 6.5%

difficult to differentiate. We think it is because these activities
are similar in the view of sensors.

2) Standing has a high false negative, this might be due
to lack of training data samples.

3) Typing and standing, walking and standing, and typing
and laying are harder to classify from each other. This might
be because of multiple activities are happening at the same
time, but we only supports tagging one activity per data
sample.

Here is a summary of all results that we use:

VI. CONCLUSION AND FUTURE WORK

The results presented above show that it is possible to
identify user behavior while the users are holding phones
in their hands. However, from this project, we noticed the
following aspects require improvements:

1) Adding more data is still improving our test error on
the margin. We would like to try to add more data to see
how much this will improve the model.

2) Having a better definition of activities would improve
this model. We would like to allow the possibility of simulta-
neous multiple activities tagging, since some of the activities
can be done simultaneously.

3) Sensor data collection from different types of phones
can be significantly different. The reason for this could be
that the sensor calibration and precision are different for each
phone. We end up using the data from the same phone.

4) There exists an activity pattern for each user. Using
one user’s training data to predict another user’s behavior
is performance worse than predict this user’s behavior. Per-
sonalized model for each user might improve the prediction
accuracy. We would like to solve these problem in the future.

VII. ACKNOWLEDGEMENTS

We thank Professor Andrew Ng, Professor John Duchi,
and Teaching Assistant Rishabh Bhagava for their instruc-
tions.

REFERENCES

[1] Shu Chen and Yan Huang, ”"Recognizing human activities from multi-
modal sensors,” Intelligence and Security Informatics, 2009. IST *09.
IEEE International Conference on, Dallas, TX, 2009, pp. 220-222.

[2] Human Activity Recognition on Smartphones using a Multiclass
Hardware-Friendly Support Vector Machine, Davide Anguita, et. al.

[3] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge
L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recog-
nition Using Smartphones. 21th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning,
ESANN 2013. Bruges, Belgium 24-26 April 2013.gnal Detection and
Estimation. New York: Springer-Verlag, 1985, ch. 4.

[4] A Study on Human Activity Recognition Using Accelerometer Data
from Smartphones, Akram Bayat, Marc Pomplun, Duc A. Tran,
MobiSPC, 2014.

[5] Activity recognition from user-annotated acceleration data, Bao, Ling
and Intille, Stephen S, Pervasive computing, 2004, Springer

[6] Key Features of MATLAB Mobile, The MathWorks, Inc.
https://www.mathworks.com/products/matlab-mobile/features.html

