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Abstract—This paper considers the problem of navigating a
hopping rover on the surface of small Solar System bodies, such
as asteroids and comets. Specifically, by controlling the torques
applied to three internal flywheels, the rover is able to perform
controllable long-range hops and short tumbling maneuvers. The
highly stochastic dynamics of bouncing in microgravity and the
sequential and discrete nature of control inputs makes it difficult
to apply traditional motion planning algorithms (e.g., graph
search and sampling-based methods). Building on a previous
RL approach to motion planning in a simplified 2D world,
this project casts the full 3D motion planning problem as
a tractable MDP. Model-free RL techniques (i.e. Q-iteration)
with linear regression value function approximation is used to
derive approximately optimal control policies which outperform
previous control heuristics in simulation.

I. INTRODUCTION

Hopping rovers have been a subject of increasing interest in
the space community for exploring small Solar System bodies,
such as asteroids and comets, where the microgravity envi-
ronment prohibits conventional wheeled or legged locomotion
[1], [2]. In fact, four small hoppers are currently en route
to asteroid Ryugu aboard JAXA’s Hayabusa 2 spacecraft—a
MASCOT lander developed by DLR [3] and three MINERVA
landers [4], which are both designed to perform small hops,
albeit with minimal control.

Over the past few years, a team from Stanford and JPL
have been developing a new type of hopping rover that uses
internal actuation via three orthogonal flywheels to hop and
tumble—a paradigm that enables controllable trajectories (see
Fig. 1) [2], [5], [6].
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Fig. 1. Hedgehog rovers spin three internal flywheels to controllably hop and
tumble in microgravity environments.

The rover, called “Hedgehog,” is a cube-shaped structure
with three internal flywheels that can be used to exchange
momentum with the structure, causing it to spin and push
off from the surface. Hedgehog has eight spikes (one on
each corner) that act as feet for gripping the terrain and
protect it from impacts with the surface. Depending on how
the flywheels are actuated, Hedgehog can perform a variety
of controlled maneuvers or motion primitives, ranging from
long range hops (over 100 m) to short, precise tumbling. (see
Fig. 2). The dynamics and control of these motion primitives
has been studied in detail via dynamic models [6], simulations,
and reduced gravity experiments [7], which characterizes prop-
erties such as takeoff angle and velocity, and their uncertainty’.
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Fig. 2. Hedgehog’s three fundamental motion primitives.

While the dynamics control of individual maneuvers has
been studied extensively, this is just one step towards achieving
the ultimate objective of rargeted, point-to-point mobility on
small bodies—a task that may require many hops. Concate-
nating multiple hopping maneuvers to achieve some mission
objective (i.e. navigate to a goal region) is an open problem.

In this paper, I present one of the first, if not the first study of
stochastic motion planning for microgravity hoppers, modeled
as an MDP. Section II present the problem structure and
formally defines the MDP. Sect. III discusses the simulation
environment used as a generative model for data collection.
Sect. IV proposes a model-free RL algorithm called “Least-
squares fitted Q-iteration with parametric approximation” for
approximating the optimal value function, and discusses fea-
ture selection. The results, including algorithm convergence
and policy evaluation, are discussed in Sect. V, and the paper
concludes with Sect. VI.

'For more information on this project and for a list of
publications, see the project website at: http://asl.stanford.edu/projects/
surface-mobility-on-small-bodies/



II. PROBLEM FORMULATION

Because of the sequential nature of control inputs and the
highly stochastic dynamics, an MDP is a natural way to
approach this problem. Specifically, the state of the rover
can be thought of as it’s resting location and orientation on
the surface of the body, or more generally, its “belief state”
(although, partial observability is left for future work). The
actions the rover can take are the space of motion primitives
(see Fig. 2). The reward model is a design choice that can
be structured to encode mission objectives (e.g., big bonus in
goal states and penalties in hazardous states). A previous study
considered a simplified 2D version of this problem, whereby
the discretized (1D) state space was a series of piecewise-linear
surface patches and the action space was also a 1D discretized
span of velocities. The low-dimensional discrete state and
action spaces allowed the transition model to be estimated
directly from simulation data as a MLE of the transition matrix

[8].

Fig. 3. Motion planning of a hopping rover formulated as an MDP.

This approach does not scale well to higher dimensions. In
the full 3D formulation, the state (position and orientation)
lives in RS and actions (velocity vector) live in R3 (see
Fig. 3). This dimensionality can be approximately reduced by
making two simplifying assumptions: (1) ignore the rover’s
orientation (S : R® — R3) and (2) fix the elevation angle of
the hop velocity relative to the local surface normal vector
(A : R — R?). In practice, reducing the state to only the
location on the surface is reasonable assuming a lower level
controller to adjust orientation?. The hop angle assumption is,
in fact, a physical constraint of the hopping control (generally,
the rover hops at a 45° angle) [6]. However, even with this di-
mensionality reduction, discretizing the state and action spaces
requires very course binning to make the transition function
storable. The need for large, “global” state transitions as well
as controlled /ocal movement prohibits state discretization.
Thus, for this study we consider the continuous state space:

’States: S = [z,y, 2] C R3. ‘ (1)

and the action space in R? is discretized as:

Actions: A = [A;, Ao,
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20n a convex body, R is sufficient to parametrize the surface (i.e. latitude
and longitude), but such parametrization is not always possible on small bodies
with irregular, non-convex shapes

where the direction (¢;) and speed (v;) are uniformly dis-
tributed bins from 0 to 27 and vy, tO vmax respectively. For
this study, we choose ny, = 8 and n, = 10, which is large
enough to sufficiently cover the action space, but small enough
to remain tractable.

For traditional robot motion planning, it is often easy
to construct cost functions that capture physical objectives
(e.g., minimizing distance, energy, time, etc.). This is less
straightforward when casting a planning problem as an infinite
horizon MDP with discounted rewards. For hopping rovers, we
would like to incentivize actions that minimize the expected
time to real the goal. However, since actions take various
amounts of time, discounting a terminal reward alone is not
sufficient. Accordingly, an additional penalty is added to the
reward function:

Rewards: R(sy,-) =1, R(sp,-)=—1, and

—t(s,a) 3)

R(s,a) = , v=0.99

tmax

where s4 € Sgou C S is the goal region(s), s, € Shazara C S
defines hazardous regions, and (s, a) is the total travel time
for taking action a from state s to state s’. With this con-
struction, and for low discounting (y = 0.99), the optimal
policy approximates a minimum-time policy. In other words,
the optimal value function V* can be interpreted as a time-to-
goal metric, where E(time to goal) & ¢y (1 — V*).

III. DATA COLLECTION

So far, Egs. (1)—(3) define four of the five elements required
in an MDP (S, A, T, R,~). The transition model requires
special attention, as it cannot be modeled explicitly due to
the highly nonlinear and stochastic dynamics of ballistic flight
in irregular gravity fields and bouncing on uneven surfaces.
Instead, individual trajectories can be sampled from a high-
fidelity simulation environment, which forward propagates the
nonlinear dynamics and captures uncertainty in the (1) the
initial hop vector (i.e. control errors), (2) rebound velocities,
and (3) gravity field. Figure 4 shows an example of 20
trajectories randomly sampled from a single state/action pair.

Fig. 4. Monte Carlo simulations of 20 hopping trajectories on the surface of
asteroid Itokawa using a 3-million facet shape model.

Specifically, the simulation models the rover as a simple
particle (i.e. its CG) that is subject to gravitational and contact
forces. A polyhedral gravity model is used to propagate the
ballistic trajectories, which integrates over the volume of a
shape model and assumes constant density (cite Scheeres).
The initial launch vector and rebound velocities are sampled

[BH]:



from predetermined distributions characterizing control un-
certainties and surface properties, respectively. A data set of
500, 000 trajectories was generated (in roughly 7 hrs) to train
the RL algorithm in Sec. IV, with inputs {s;, a;} and outputs
{ti, si+1}. States and actions were sampled mostly at random,
with some bias towards “interesting” regions. For example,
more weight was given to “flat surface” states that the rover
is more likely fall into. At the same time, the samples are
spatially distributed so that the data set can be used to train
policies for various objectives (i.e. visiting different locations).

IV. REINFORCEMENT LEARNING APPROACH

Although model-based RL demonstrated good performance
in the simplified 2D model considered in [8], the dynamics
in 3D are non-linear and much more chaotic, making it
difficult to approximate the transition model. For example,
small perturbations in the hop velocity can yield drastically
different settling distributions. Instead, I chose to investigate
a model-free approach that directly approximates the value
function. Specifically, I implemented an “offline least-squares
fitted Q-iteration with parametric approximation” algorithm,
as outlined in [9]. For this application, it is important to
leverage offline computation as much as possible so that the
implementation on the CPU-constrained rover hardware is
minimized (ideally, just a lookup table encoding the policy).
For simplicity and convergence guarantees, I chose to estimate
the Q-functions for each discrete set of actions as a linear
combination of state features:

Q(S7 Cl) = (Z)T(S)Ha?

Thus, the goal is to fit the n, = nyn, weight vectors (6,) for
each unique set of actions. A batch variant of fitted Q-iteration
is outlined in Algorithm 1.

¢(s),0, € R™ “)

Algorithm 1 Least-squares fitted Q-iteration
Input: discount factor ~,
samples {(s;,a;,s;,m;)|i =1,...,ns}
feature mapping ¢(s;)

1: initialize parameter matrix ©g = [0 g, ..., O, 0]

2: repeat at every iteration [ = 0,1,2, ...

3 fori=1,...,ns do

4 Qi1 < i +ymaxy [@(s])T O]

5: end for

6 fora=1,...,n, do

7 Oa,i1 < argming 3=, (Qigv1 — d(si)"0a)
8 end for

9: until ©;4, satisfactory

Output: 6* = [91,l+17 ~~~79na,,l+1}
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Line 1 initializes the parameter vectors, which can speed
convergence if chosen wisely. Leveraging the intuition that the
value function should decrease monotonically as the distance
from the goal increases, fy was set to [0,...,0,1,0,...,0]T,
where the non-zero element j corresponds to a radial basis
feature around x, (the center of S,): ¢;(s;) = e~ llsi—all2
(see the first heatmap in Fig. 5).

Lines 3-5 calculate @); for each data sample based on the
observed reward (see Eq. (3)) and the optimal value at the next
state, discounted by . This can be implemented as a 1-line
matrix multiplication:

1 o7 (sh)
+ colmax : ;. 5)
Tng ¢T(S’,n,5)

Lines 6-8 involve partitioning the data into action sets and
performing n, least squares problems:

Q1 =

Oair1 = (2@1) ', Quiv1, Po= |07 (s}) (6)

ar=a

The stopping condition for convergence is met when
100,041 — Oatllz < B,Ya = {1,...,n,}. Because of the
efficient use of data, this algorithm typically converges in a
few tens of iterations. The complexity of Eq. (5) is O(nsngny)
and the complexity of Eq. (6) is O(nsn%), indicating that large
feature vectors are particularly expensive.

A. Feature Selection

As with any linear function approximator, the “optimal”
value function is only as good as the span of features used
to represent it. Recall that by discretizing the action space, ¢
is only a function of the state, s;. It is also important to note
that, although the raw state is represented with (z,y, z) € R3,
we are only concerned with the value of the states on the
surface—a subspace within R3. In other words, Eq. (4) has
value for all s € R®, but only points on the surface are
physically realizable.

Some features can be intelligently designed based on “ex-
pert knowledge” of the dynamics and the mission objectives.
For example, since the locations of the goal and hazard regions
are predefined, radial basis features centered on these regions
are likely to be strong indicators of the value of nearby states.
These features are:

dgmax — d
() = Qo =) (= et
dg,max
d
() = Ldy(5) < Dy yuls) =
where dg(s;) = ||zs, — x4||2 is the distance of state s; from

the center of goal region g, and D, is its radius. These features
represent (in order) linear, exponential, binary, and inverse
functions of the distance from the center of each goal (and
hazard). Thus, for a mission scenario with ng goal regions
and ny, hazard regions, there are a total of 4(ngy + ny,) “hand-
crafted” features.

To capture finer spatial resolution in the value function
across the surface, an additional set of features is required.
There are many features that have been successfully used for
parametric function approximation such as distributed radial
basis functions (RBFs), indicator functions for aggregated state



clusters, and monomials. For this problem, I chose to add a
set of k" order monomials of the raw state:

$(s) = afry22Fe {ki ke, ks, € Nolky + ke + ks < k).
This produces a set of (kf’) linearly independent mono-
mial features. Thus, choosing k presents the classic tradeoff
between bias and variance and depends on the size of the
data set. For the 500,000 trajectory samples, 50,000 were
randomly selected to be held out as part of the test set. Through
cross-validation on this test set, k. = 5 was chosen as the
best representation, which produces 56 monomial features. All
features were normalized to lie in the range of [0, 1].

V. RESULTS

With the MDP definition from Sect. II, the generative
sampling model from Sect. III, and the RL algorithm in
Sect. IV, we can now evaluate the performance of this method.
First, we consider the convergence of Algorithm 1 and then
we discuss the quality of the policies that it generates.

A. Value Function Convergence

One of the nice things about using linear value function
approximation in a Q-iteration algorithm, is that there are
provable convergence guarantees, as discussed in [9]. In other
words, the error of the least squares fit in line 7 of Algorithm
1 will decrease monotonically. However, this is of course only
true for states represented in the data set. In other words, for
a given action, the value function may represent a good fit in
regions where there is sufficient data, but may swing wildly to
unrealistic values in other regions with sparse or no coverage.
This is why I chose to sample states mostly at random and
keep the number of actions low, resulting in distributed state
coverage and a large number of data samples per action (6000).
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Fig. 5. Heat maps of the value function projected onto the surface of asteroid
Itokawa, showing convergence of Algorithm 1 within 15 iterations. Smart
initializations can help speed convergence.

Thankfully, for this problem, there is a nice way to plot the
value function over the entire state space: as a surface heat
map. Figure 5 shows a value function heat map overlayed onto
the surface of asteroid Itokawa at various iterations in Alg. 1,
from initialization to convergence. In this example, a single
goal and hazard region are defined according to the reward
model in Eq. 3, and t;.x is set to be 8 hours®. The optimal
value function had a mean absolute error of 0.04 (which alone
is not that useful).

3Motion is typically very slow in microgravity, with the duration of a single
hop taking anywhere from minutes to hours.

So do these heatmap plots of the value function make sense?
Well, recall from Sect. II that the reward model is constructed
in such a way that gives the optimal value function a beautiful
physical interpretation: it represents the expected time-to-goal
according to E(time to goal) = tma (1 — V*), which is only
true for very low discounting (v = 0.99). So we would expect
the value function of states “close” to the goal region to be
higher than more distant states, which is indeed the case in
Fig. 5. Also, we can see how the presence of hazards also
affects the nearby state values, which can be interpreted as
the additional time it takes to carefully go around the hazard.
For tn.x = 8 hrs, the optimal value function for states farthest
from the goal is very close to zero, indicating that the expected
time to reach the goal from those location is nearly #;,x. Note
that an additional “do nothing” state was added to prevent
negative values (i.e. R(s,0) = 0).

B. Policy Evaluation

The convergence of the value function produces low error
residuals and tends to agree with intuition, but this says
nothing about the quality of the control policies. As a baseline
for comparison, the learned control policy was compared to
a heuristic policy, which is a best attempt at controlling the
rover without any simulation data to learn from. The “hop-
towards-the-goal” heuristic is a 3D extension of the control
heuristic proposed in [5] and is computed as follows:

1) Calculate the plane that contains the current state po-
sition (s;), the goal position (s), and the local gravity
vector at this vector g(s;).

2) Define the hop velocity unit vector (¢) that lies in
this plane and also obeys the elevation angle constraint
relative to the local surface normal (this should have a
unique solution).

3) Given the approximate plane of motion, the initial ve-
locity unit vector, and assuming constant gravity, use
2D projectile motion equations to calculate the required
speed to hit the goal state exactly.

4) Limit the hop speed to vp,, or the estimated escape
velocity at s;, whichever is lower.

In summary, this heuristic directs the rover to hop directly
at the goal region and assumes planar, parabolic trajectories
and ignores bouncing dynamics. Planar motion is a reasonable
assumption for small-scale hops, but becomes much worse for
more distant hops, which often produce curved 3D trajectories.
Thus, this heuristic policy has been shown to work well in
simulation and actual experiments, but only for relatively flat
and obstacle-free terrains. The goal here is to show that the
policy generated from the RL approach presented in Sect. IV
is more effective in complex terrains.

To compare the performance of this heuristic policy to
the learned policy, three mission scenarios were constructed,
cast as the MDP reward model from Eq. 3, and executed in
simulation 1000 times (refer to Fig. 6). Two metrics were
used to compare the performance of each policy: (1) the “%
success” which simply reflects the percentage of simulations
that reach the goal within ¢,,,x without entering the hazardous



region, and (2) the “mean time” (of the successful samples)
to reach the goal.
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Fig. 6. Three navigation scenarios across the surface of asteroid Itokawa
(plotted with a geopotential color map), comparing the learned and heuristic
policies. “% Success” indicates the percentage of the 1000 simulations that
reached the goal safely (i.e. not escaping or entering the hazardous region)
within ¢max. The “mean time” reflects the mean total time to reach the goal
of the successful samples

The first scenario represents motion planning task in which
the rover must traverse relatively flat, obstacle-free terrain, so
it is no surprise that the heuristic policy has comparable per-
formance to the learned policy. The second scenario introduces
a large hazardous region between the starting and goal states®.
Ignorant of this hazard, the heuristic policy often hops or
bounces into it, whereas the learned policy exhibits “intelligent
avoidance” actions such as hopping around it, or aggressively
over it. Finally, one very difficult situation for a hopping rover
is to reach locations with high gravitational potential (i.e. at the
top of a hill), as illustrated by the third scenario in Fig. 6 (note
the extreme geopotential color difference between A and D).
The randomness usually drives the residual bounces towards
regions of lower gravitational potential, making higher states
“unstable” in a sense. Indeed, the heuristic policy drives the
rover straight up the steepest part of the ascent, which typically
causes it to bounce back down and thus, has a low success rate.
On the other hand, the learned policy is able to strategically
position the rover into states from which the goal region is
more easily reachable. To observe what these policies look
like executed in simulation, follow the link to my video online
at: https://youtu.be/j-bgiX4QjkQ, which shows the execution
of the learned policy for the first scenario.

VI. CONCLUSION

This paper presented the motion planning problem for the
navigation of hopping rovers on small Solar System bodies.
By casting this problem as an MDP and using model-free rein-
forcement learning methods to approximate the optimal value
function, the extracted policies have demonstrated a previously
unobtained level of performance. The batch least-squares fitted
Q-iteration with linear value function approximation algorithm

4Scientists believe that this area may indeed be covered in very soft, loose
granular soil, or “regolith,” in which the hopper would likely sink.

(Alg. 1) made efficient use of simulation data to converge on
the optimal policy with very few iterations. In simulations,
these learned policies outperformed a “best-guess” heuristic
policy in every scenario. To the best of the author’s knowledge,
these results constitute one of the first ever demonstrations of
MDP motion planning for hopping rovers on small bodies.

This work leaves a number of extensions open for future
work. First, defining the state in R? (and therefore defining
the value function in R3), is a burdensome representation,
requiring many more features than necessary. In the future,
I will use conformal mapping techniques to parametrize the
irregular surface model in R?. Combined with PCA feature-
reduction, this would have much more representation power
and produce more accurate value function approximations.

One issue that became apparent in observing policy execu-
tion is the effect of local variation in surface slope. Recall that
the inclination angle of the hop vector is constrained relative
to the local surface normal to 45°. As a result, the same
action executed in nearby states that have different slopes (i.e.
due to surface roughness) may produce drastically different
trajectories. The “smooth” k" order monomial features used
here do not have sufficient spatial resolution to capture sharp
value function changes like this. In the future, I will augment
the state variable with some notion of surface slope to account
for this.

Some parallel work being done by our colleagues at JPL is
the problem of localization, primarily through onboard vision-
based techniques, whereby state estimation will likely have
some uncertainty. Future work will consider tractable ways of
capturing this partial observability in a POMDP formulation.

Finally, NASA and other space agencies are primarily
concerned with minimizing risk of missions—a subtle but
important difference from maximizing expected rewards. In
the future, I will also explore the use of time-consistent risk
metrics such as “conditional value at risk” (CVaR) presented in
[10], which allows for imposing probabilistic risk constraints
(e.g. < 1% probability of hitting an obstacle).
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