Sensor-based Semantic-level Human Activity Recognition using

Temporal Classification

Weixuan Gao gaow @stanford.edu
Chuanwei Ruan chuanwei@stanford.edu
Rui Xu ray1993 @stanford.edu

I. INTRODUCTION

Human activity recognition has always been an active
research topic driven by the potential ranging from health
care, assistive technologies to manufacturing and smart
surveillance system. In this project, we build several models
to estimate the semantic-level human activities given multi-
variate time series data from body-worn sensor. We use the
K-Nearest Neighbors, Boosted Tree and Random Forest to
build the baseline model, which transform the raw sensor
data into the semantical labels without considering temporal
correlation. Random Forest gives an accuracy of 86.1%,
which is the highest among these methods. To include the
temporal correlations, we firstly try to deploy the LSTM
model directly on raw sensor data. Given the high variance
and high dimensionality of raw sensor data, the LSTM fails
to converge. In order to solve this problem, we build up a
two-stage framework. The first stage is to estimate the low-
level actions, which are provided by original dataset, from
raw sensor data by traditional methods. There are three kinds
of low-level actions: locomotion, left arm action and right
arm action. For each multi-classification tasks, the accuracy
are 94.1%, 82.5% and 74.4% respectively. The second step
is to use the temporal sequences of low-level actions to
estimate their corresponding semantic labels. Considering a
combination of the temporal sequence of low-level actions as
a sentence, the LSTM model has 75% accuracy. If output is a
sequence of high-level labels, the LSTM model has 69.59%
accuracy. However, without involving temporal relationships,
the methods that directly project low-level actions to seman-
tic labels have accuracy lower than 50%. Combining these
two stages, the model has 68.2% accuracy.

II. RELATED WORK

Several works have been done to recognize simple actions
from sensor data. For example, Ravi et al. [2005] used
shallow classifiers, such as SVM, Nave Bayes, and SVM
to classify eight daily actions, which achieved the accuracy
of 95% in the result. Another work (Wang et al. 2012) imple-
mented a Nave Bayes model to recognize six daily actions
to offer music recommendation. However, because human
activities are naturally complex, each single action is not
isolated, but a sequence of actions in diverse combination.
Therefore, capturing the temporal relations among actions is
the key to solving the problem. Although much effort has
been put in similar work on video frame recognition, it is

extremely hard to directly transfer video-based method to
sensor-based data due to the large difference on data format
and the way of interpretation [3].

III. DATA SET
A. Data Introduction

The dataset OPPORTUNITY Activity Recognition Data
Set is obtained from UCI machine learning repository. The
dataset comprises the readings of motion sensors recorded
while users executed typical daily activities. The dataset
is recorded in a sensor-rich environment which contributes
to 242 attributes. More than 27,000 of atomic activities
were collected in each environment. In addition, a natural
execution of activities is achieved by instructing users to
follow a high-level script but leaving them free interpretation
as for how to achieve the high-level goals. The dataset is
designed to research work on the different level of activities:
from simple gestures to high-level compound activities (see
Figure 1). This hierarchy is able to be reflected in this data
set.

Four Levels of Activities

High Level ‘ Relaxing ‘ | Coffee Time | ‘Clean Up |

Middle Level ‘ Both Arms Open Door 1 ‘ | Both Arm Close Fridge ‘

Low Level [Right Arm Unlock | [Left Arm stir |
Locomotion |Stand ‘ ‘Walk | | Sit | | Lie |
Fig. 1. Four Levels of Activities

B. Data Process

1. Kernel Smoothing Denoising is necessary for this re-
search, because of the quality of equipment, and tiny and re-
dundancy features. We use kernel smoothing method to filter
noise and reduce the influence from unrelated information.
The so-called Nadaraya-Watson kernel-weighted average is
used,

Flxo) = Z?Z:VI K), (x0,X;)i
Yo Ky (xo,x:)

with the Epanechnikov quadratic kernel

KA()COJC) =D<|x;xo> 5

with
0= <1

D(t) = .
0 otherwise.

The size of the 40-nearest-neighbor smoothing window
adapts to the local density of the x;.

C. Data Scaling

In general, we observe that there are always differences
between two subjects when doing the same gesture. Different
people with different physical conditions, namely height and
powder, influence the value of each sensor a lot. Thus, it is
important to normalize each feature. We scale all the feature
to be between 0 and 1.

Raw data

Kernel Smoothing

Normalized data

Fig. 2. Data Denoising and Scaling

IV. METHOD
A. Model Evaluation
The high-level activities has 5 non-null classes and 1 null
class. The evaluation metrics we chose are accuracy and

weighted F-score. The accuracy is defined as the proportion
of correct prediction in all prediction. But the accuracy

is limited in evaluating the classification result. The other
metrics such as precision, recall, F-score and AUC will give
more useful information. Since our problem is of multi-
classification, as suggested by Chacarriage, R. et al., we
use the weighted F-score to evaluate our model as it could
consider take account the precision, recall and the imbalance
of labels. The precision; is defined as TP/(TP+ FP), and
the recall; is defined as TP/(TP+ FN). Thus the weighted
F-score could be thought as the weighted harmonic mean of
precision and recall, while the w; is the proportion of samples
of class i.

B. Baseline

The data in its nature are time-series data, however,
because of complexity of sensor data we decided to start
with methods which assume independence of training data.
Thus, the models receive raw sensor data at each time step
and predict the semantic labels. Although this assumption
is seemly too contrived, it turns out they are still able to
capture some key structures of the data. As shown in the

A0 T

Fig. 3. PCA on Raw Data, Each Color Represents a High-level Label
visualization using PCA, the raw data is obviously not linear
separable, we focus on the following non-linear supervised
learning algorithms.

1) KNN: Given a new data, K-nearest neighbor methods
finds the k nearest training data points according to a distance
metric and predict the response by taking average.

Pw=7 L %

xiENk(x)

where Ny is the neighborhood of x defined by the k closest
points x; in the training sample. In our experiments, we
select the euclidean distance. And the output classification
is chosen to be the majority class of nearest neighbors.

2) Boosting Trees: Given the high variability and non-
linearity of sensor data, the regression tree should be an
ideal method to try. As a tree-based method, the regression
tree partitions the feature space into many small rectangles.
And in each rectangle we could fit a simple model. After

X) £ tll
Xo <ty X <ty
Xo <ty
Ri R: Rs (W
Ry R

Fig. 4. Decision Tree

partitioning the tree, we could use the learned partition rule
to predict.
The model is of the form:

M
flx)= Z cml(x € Ry,).

m=1
The R, is the mth region, ¢, is the predicted response in that
region. However, since finding the optimal splitting criteria
is known to be NP hard, fitting the model requires greedy
algorithm which firstly fits a large tree with optimal split
at each level separately then use node impurity to prune the
large tree. The most popular node impurity measure used are
of the following form:

« Misclassification error:

Nim ie;mz(y,. £ k(m)) = 1— Py (m).

¢ Gini index:

K
Z Pk Pt = Z ﬁmk(l _ﬁmk)-
kK k=1

o Cross-entropy or deviance:

K
— Y Pkl 0gPm-
k=1

Although regression tree is simple yet powerful, it still
needs some improvement to tackle complex prediction prob-
lem. Boosting tree utilizes the advantages of regression tree
and gives it more predictive power. Boosting tree repeatedly
grow many shallow trees to the residuals and ensemble the
trees in an additive fashion. We use the gbm package in R
to implement the boosting tree algorithm.

3) Random Forest: Similar to Boosting Tree, the Random
Forest is an ensemble method which needs to fit many trees.
Different from boosting tree, the random forest trains many
deep trees instead of shallow trees, and the finally reports
the average of predictions. The bootstrapping helps reduce
the variance of the estimators, while the random selections
of features helps reduce the correlation of each trees. Thus
the Random Forest on the one hand could learn complex
structures of data which reduce the bias, on the other hand
could alleviate the high variance from which deep trees
suffer. Given the complexity and variance of our data, we

decide to use the Random Forest. The experiments were done
in Matlab using Statistics and Machine Learning toolbox.

C. Recurrent Neural Network

To include the temporal relationships in the model, we
use the Recurrent Neural Network (RNN). Theoretically, the
RNN is feasible to consider all previous actions in the train-
ing sequence which is particularly suitable for our purpose
because each high-level activity is usually about 1000 time
step(about 30s). And it might not be very appropriate to cut
the sequence into small pieces.

Outputs
h(t-1)
h(t)
Hidden Units Delay
X(t) h(t)
Inputs
Fig. 5. A Simple Fully Connected RNN

But the simple RNN might not actually be able to learn
the long dependence of the training data. We thus apply the
Long Short-Term Memory(LSTM) layer in our model.

Compared with simple RNN, the LSTM has some addi-
tional structure. It has input gate, forget gate, output gate,
new memory cell and final memory cell. This complex struc-
ture gives LSTM the ability to learn the long dependency and
makes it preferable in our applications.

We firstly try to use the preprocessed raw sensor data
directly. But this method fails to converge given our limited
computing resources. We decide to simplify the model by
inputting the sequence of low-level actions instead of raw
sensor data. We consider three kinds of low-level activities:
locomotion, left arm actions and right arm actions. We
encode each unique combinations of those actions as a
category. Thus the whole network is consisted with three
layers: an embedding layer, a LSTM layer and a softmax
layer.

To improve the RNN model, we also add a convolutional
layer with max-pooling after the embedding layer because
we guess the actions in a small time step range should be
highly correlated while convolutional layer might be able to
capture this information.

This model is still limited since it could only give one
high-level label after observing the whole sequence. Since
we actually want to have a prediction of high-level activities
from the beginning of the sequence, we move forward by

TABLE I
ACCURACY OF EACH MODEL ON SUBJECT 1

K-NN | Boosting Tree | Random Forest
Raw to locomotion 86.59% 92.17% 94.1%
Raw to left are 82.66% 84.78% 82.5%
low-level activity
Raw to right arm |, | 5,/ 71.73% 74.47%
low-level activity
Raw to high level 76.4% 79.72% 86.01%
activity
low level tf’ plgh level 46.7% 447% 45%
activity
TABLE II

RANDOM FOREST MODEL ON SUBJECT 1,2, AND 3

Accuracy | F1 score
Raw to locomotion 89.05% 0.8889
raw to left arm 79.50% 08258
low-level activity
raw to rlght.a.rm 26.93% 07813
low-level activity
raw to high level
activity (with null) | 5208% | 0.8286
raw !0 high level 84.09% 0.8442
activity (no null)

considering outputting the sequence of high-level labels.
This is easily established since the design of RNN naturally
supports such output.

All the RNNs are implemented using the Deep Learning
library Keras in Python, and we use the Tensor Flow as its
backend.

V. RESULT AND ANALYSIS
A. Baseline

Considering the long training time with full data sets, we
ran the experiments on subject 1 first. The adll, adl2, adl3
and adl4 are training set and the adlS5 is the test set.

According to the results, we decide to use Random Forest
on the full data sets. The training data are from subject 1, 2
and 3. Their adl5 are used as test data, while other adl are
used as training data.

Surprisingly, we find that the increase of sample size does
not increase the accuracy but indeed decreases it. We guess
it is because of the variance between different subjects.

The test accuracy gained from LSTM model using low-
level actions as input is not very satisfactory but it proves our

TABLE III
MODEL EVALUATION OF EACH RNN ON SUBJECT1,2 AND 3(WITHOUT
NULL)
Training Test Te:st Acc.uracy
A (with estimated
ccuracy Accuracy
low-level)/
/F1-score /F1-score
F1-score
Many | LSTM | 72.13%/0.6526 50%/0.4545 68.75% /0.6087
to CNN+
One | LSTM 77.52%/0.7586 75.5%/0.7500 68.5%/0.6875
Many | LSTM | 81.07% / 0.8081 | 69.59%/0.7027 74.6%/0.7541
to CNN+
Many | LSTM 73.23%/0.7163 | 62.96%/0.6439 61%/0.6101

Walk -

Stand -
Proportion

0.75

0.50

True Class
@

0.25

0.00
Null -

Predicted Class

Fig. 6. The Confusion Plot for Locomotion on Subject 1, 2, and 3

unlock -
stir-
spread -
sip-
release | Proportion
reach - il

open-| 075

null- 0.50

True Class

move = L

0.00

lock =

b, o %
(3 8 s
o By, s

% % s, 8 < 2
8, s, % %, %
%, %, P % Iy

%
UG by 7, % %
¢ ? R 4 o

Predicted Class

Fig. 7. The Confusion Plot for Right Arm Low-level Activities on Subject
1,2, and 3

guess that it is possible to use sequences of atomic actions
to predict the semantic information.

It should be noted that the result of many to one models
should not be directly compared with the baseline. In this
model, we only output one label given a sequence while the
baseline model output labels at every timesteps. So this many
to one models here only serves as a proof that the temporal
relations in low-level actions could indeed be used to predict
semantic level activities. Also, since each high-level activity
is about 1000 time steps, by using the one label per sequence,
we only have 16 test sequences. Thus the results are not very
stable.

After testing our initial guess, we work on predict the high-
level labels at each time step using many to many framework.
The many to many models have slightly better test accuracy.
We think it might because the increased outputs frequency
give could give more information of error in training despite
the fact that the initial predictions of a sequence could hardly
be accurate(no enough temporal information to use at the
beginning).

Also, one interesting point is that using estimated low-
level activities do not significantly impair the test accuracy

sandwich time -

relaxing -

Proportion
0
8 075
% early morning - 0.50
2
= 0.25
coffee time - 0.00
cleanup -
%, %, %, %, o,
% %, 7%, % s
e 7 7
% K3
Predicted Class
Fig. 8. The Confusion Plot for High-level Activities Using LSTM (many
to many)

despite that the estimated low-level activities itself are not of
very high accuracy. But it is not impossible as the subjects in
the data sets were only assigned to perform certain activities
without rigid scripts. Thus the temporal relationships from
low-level actions to high-level activities are of variability.
This result also suggests that to obtain more accurate results,
we need to include more information beside the low-level
activities.

VI. CONCLUSION AND FUTURE WORKS

In this project, we study and apply different machine learn-
ing techniques to solve multivariate classification problem by
seeking temporal relatedness veiled in the dataset. Although
the outcome of baseline model surprisingly outperformed
two-stage RNN model, we still remain optimistic that the
latter has potential to give out better result under more
completed modeling. In the future ,we are going to focus on
improving the current model by providing more sophisticated
modeling and extracting veiled temporal relatedness from
either a single attribute or interaction of several different
attributes of low-level activities, which needs a new form of
representation such as adjacency-matrix in graph theory. In
addition, more data are needed to feed the neural network.
More progressively, we would like to build a system which
could directly learn the temporal-relatedness from raw data
and generate the predictions of semantic levels. Thus we do
not need to label the other low-level actions, which is not
very practical if we want to have very large data sets to train
our model.

REFERENCES

[11 Ye. L, Liaing N, Lei. H, Luming. Z, and David. R, (2016). Ac-
tion2Activity: recognizing complex activities from sensor data, 1J-
CATI’15 Proceedings of the 24th International Conference on Artificial
Intelligence pp 1617-1623.

[2] Nishkam. R, Nikhil. D, P. Mysore, and M. L. Littman, Activity
recognition from accelerometer data, In Proceedings of the Conference
on Innovative Applications of Artificial Intelligence 2005.

[3] Kuehne. H, Gall. J, & Serre. T, (2016). An end-to-end generative
framework for video segmentation and recognition,2016 IEEE Winter
Conference on Applications of Computer Vision (WACV).

[4]
[5]

[6]

Breiman. L, Random Forests. Machine Learning,45, pp. 532, 2001.
Hastie. T, Friedman. J, & Tibshirani. R, The Elements of Statistical
Learning.Springer Series in Statistics, 2001.

Sepp.H,& Jrgen. S, Long Short-Term Memory, Neural Computation,
Volume: 9, Issue: 8, Nov. 15 1997 .

