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Introduction

Our project is motivated by a common issue in developing economies. In many developing countries, govern-
ment programs targeting the poor face the problem of identifying who the poor households are. In particular,
while there are observable characteristics of the households from survey data, income is usually unobserved
for the very poor. A common approach is obtaining a list of poor households from the local administrative
office, or the village chief. One problem that arises from this approach is corruption at the local level, as
the officers might have incentives to misreport the poorest households to some extent to benefit their own
relatives and friends. Ignoring the corruption might lead to a large misallocation of financial resources away
from the people who are in real need of those. Our goal is to propose a method that reduces the errors
of classification created by the local administrative offices. The method relies on the assumption that the
reports coming from administrative offices, while suffering from corruption, are still somewhat informative
of the poverty in the village. This is because local authorities also care about their reputation in the com-
munity and do not misreport completely. Information from the administrative offices, therefore, might be
partially representative of the poverty ranking of households in the community, but not entirely accurate.
Given a sample of lists of poor households provided by local authorities with varying corruption rates that
are independent across villages, we aggregate this data and use it to obtain a superior identification of poor
households. Due to the independence of errors, characteristics of individuals wrongly classified as poor in
one village will be similar to those of the rich in other villages. We propose two machine learning algorithms
to deal with the issue. Our better performing algorithm makes a significant improvements in identifying
poor households in the population.

Methodologies and Algorithms

Definition of the Problem

Suppose there are K villages with Mk households living in village k for each k ∈ {1, ...,K}. Thus, the size of
the training sample is M =

∑K
k=1Mk. Each household is characterized by income y and a vector of features

x, which which are described in the next section. Let D be the distribution over (y, x). Suppose that the
government has limited resources that it wishes to distribute to H households in the population that are
considered poor. The government obtains from each village the list of households that have earnings below
income ȳ, where ȳ characterizes the poverty line. The information that each village representative provides
to the government is corrupt. In particular, let z(i,k) = 1 if household i in village k is reported to have income
no higher than ȳ, and z(i,k) = 0 otherwise. We assume that if y(i,k) ≤ ȳ then z(i,k) = 1 with probability 1−τk
and z(i,k) = 0 otherwise, and if y(i,k) > ȳ then z(i,k) = 0 with probability 1 − τk and z(i,k) = 1 otherwise,
with misreports independent across households. Note that we allow for different villages to have different
misreporting rates. We assume that τk <

1
2 for each k ∈ {1, ...,K}, but is otherwise an unknown parameter

that needs to be estimated. In addition to z(i,k), the government observes the vector of characteristics x(i,k)

for each household. The goal of the exercise is to find H most likely poor households in the population given
data {(z(i,k), x(i,k))}(1,1)≤(i,k)≤(Mk,K). For this project we set H = 3, 000.

Dataset and Features

For the purpose of testing how well our algorithms do, we use the already available US household data
extracted from the 2015 American Community Survey. For this project we randomly draw 50, 000 training
units from the data. Household characteristics of interests are number of household members, the head’s age
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and education, dwelling characteristics such as stove, fridge, television, etc., mortgage payment, food stamp
eligibility and spending on gas, water and fuel. These features are strongly correlated with household income
that we also obtain in the dataset. We treat different US states as different ”villages” for the purpose of the
analysis. Therefore, our dataset consists of 51 ”villages” (including Puerto Rico). We then use a threshold
of poverty line to construct the variable z(i,k) that indicates whether household i in village k lives below
the poverty line. We construct variable z(i,k) in the following way: we initially define z(i,k) to be one 1
if household’s income is below the poverty line, and 0 otherwise; we then endow each village k with the
probability of misreporting τk = βk

2 , where βk is randomly drawn from Beta(2,4); finally, for each village k

we randomly switch the values of z(i,k) at rate τk independently across households. The U.S. Census Bureau
defines the income poverty threshold in 2016 for the family consisting of two adults and two children to be
$24, 036, and thus we set ȳ = 24, 036. We simulate the dataset 200 times and assess the performance of our
algorithms over the simulated datasets.

Methods

The label of interest in our problem is whether a household is poor, s(i) ≡ 1(y(i) ≤ ȳ). We do not observe
the labels, which places us in the unsupervised learning setting. We do, however, observe imperfect signal of
the variable of interest, z(i), which distinguishes our setup from standard unsupervised learning problems.
We apply two types of EM algorithms: discriminative EM and generative EM.

Discriminative EM

On top of the assumptions outlined in the definition of the problem, we merely assume that p(s = 1) =
1

1+e−θ′x
for some parameter vector θ ∈ Rn. We make use of the following conditional probabilities in our

algorithms:

p(s|z, x; θ, τ) =
p(z|s, x; θ, τk)p(s|x; θ, τk)

p(z|x; θ, τk)
=

(1− τk)1−|z−s|τ
|z−s|
k e−θ

′x(1−s)

(1− τk)1−zτ zk e
−θ′x + (1− τk)zτ1−z

k

p(z, s|x; θ, τk) = p(z|s, x; θ, τk)p(s|x; θ, τk) = (1− τk)1−|z−s|τ
|z−s|
k

e−θ
′x(1−s)

1 + e−θ′x

Given conditional distributional assumptions on s and z, the log likelihood is,

l (θ, τ) =

K∑
k=1

Mk∑
i=1

log p
(
z(i,k)

∣∣x(i,k); θ, τk

)
=

K∑
k=1

Mk∑
i=1

log

1∑
s=0

p
(
z(i,k), s

∣∣x(i,k); θ, τk

)
The EM algorithm consists of initializing the vector of parameters (θ, τ) and repeatedly carrying out the
following two steps until convergence:

• (E-step) For each k = 1, ...,K and i = 1, ...,Mk, set Qi,k(s) = p(s|z(i,k), x(i,k); θ, τ).

• (M-step) Set (θ, τ) := arg max(θ,τ)

∑K
k=1

∑Mk
i=1

∑1
s=0Qi,k(s) log

p
(
z(i,k),s

∣∣x(i,k);θ,τk)
Qi,k(s) ,

which simplifies to

τk =
1

Mk

Mk∑
i=1

(
Qi,k(0)z(i,k) +Qi,k(1)(1− z(i,k))

)
for k = 1, ...,K

θ := arg max
θ

K∑
k=1

Mk∑
i=1

log

(
e−θx

(i,k)Qi,k(0)

1 + e−θ′x
(i,k)

)
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Intuitively, τk is an expected fraction of misreported households in village k (under probabilities {Qi,k}Mk
i=1).

The update for θ is somewhat related to the estimate of the logistic regression, in which targets are Bernoulli
distributions with success probabilities Qi,k(1) instead of hard Bernoulli outcomes. The update for θ can be
obtained with gradient accent applied to the objective stated above.

Having obtained estimates θ and τ , we compute

p̂(i,k) ≡p(s(i,k) = 1|z(i,k), x(i,k); θ, τk) =
(1− τk)1−|z(i,k)−s(i,k)|τ

|z(i,k)−s(i,k)|
k e−θ

′x(i,k)(1−s(i,k))

(1− τk)1−z(i,k)τ z
(i,k)

k e−θ′x
(i,k)

+ (1− τk)z(i,k)τ1−z(i,k)
k

Generative EM

Our feature vector consists of numerous variables, some continuous and some discrete, and we find making
standard Gaussian distributional assumptions on the feature vector inappropriate. We firstly transform
the feature vector to its principle components. We use the first four principal components because they
capture almost all of the variation in the data (using more than four principal components causes numerical
convergence issues). Abusing the notation, we refer to the transformed feature vector for individual i as x(i).
We thus assume that xi|s ∼ N (µs,Σs), and that s ∼ Bernoulli(ρ). We make use of the following conditional
probabilities in our algorithm

p(s|z, x;µ,Σ, ρ, τ) =

(1− τk)1−|z−s|τ
|z−s|
k φ

(
Σ
− 1

2
s (x− µs)

)
(1− ρ)1−sρs

(1− τk)1−zτ zkφ

(
Σ
− 1

2
0 (x− µ0)

)
(1− ρ) + (1− τk)zτ1−z

k φ

(
Σ
− 1

2
1 (x− µ1)

)
ρ

p(z, s, x;µs,Σs, ρ, τ) = p(z, x|s;µs,Σs, τk)p(s; ρ) = (1− τk)1−|z−s|τ
|z−s|
k φ

(
Σ
− 1

2
s (x− µs)

)
(1− ρ)1−sρs

The log likelihood is

l (µ,Σ, ρ, τ) =
K∑
k=1

Mk∑
i=1

log p
(
z(i,k), x(i,k);µ,Σ, ρ, τk

)
=

K∑
k=1

Mk∑
i=1

log
1∑
s=0

p
(
z(i,k), x(i,k), s;µs,Σs, ρ, τk

)
The EM algorithm consists of initializing vector of parameters (µ,Σ, ρ, τ) and repeatedly carrying out

the following two steps until convergence:

• (E-step) For each k = 1, ...,K and i = 1, ...,Mk, set Qi,k(s) = p(s|z(i,k), x(i,k);µ,Σ, ρ, τ).

• (M-step) Set (µ,Σ, ρ, τ) := arg max(µ,Σ,ρ,τ)

∑K
k=1

∑Mk
i=1

∑1
s=0Qi,k(s) log

p(z(i,k),s,x(i,k);µs,Σs,ρ,τk)
Qi,k(s) which

simplifies to

τk =
1

Mk

Mk∑
i=1

(
Qi,k(0)z(i,k) +Qi,k(1)(1− z(i,k))

)
for k = 1, ...,K

µs =

∑K
k=1

∑Mk
i=1Qi,k(s)x

(i,k)∑K
k=1

∑Mk
i=1Qi,k(s)

Σs =

∑K
k=1

∑Mk
i=1Qi,k(s)(x

(i,k) − µs)(x(i,k) − µs)T∑K
k=1

∑Mk
i=1Qi,k(s)

ρ =
1

M

K∑
k=1

Mk∑
i=1

Qi,k(1)
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Having obtained estimates µ, Σ, ρ, τ1,...,τK , we compute

p̂(i,k) ≡p(s(i,k) = 1|z(i,k), x(i,k);µ,Σ, ρ, τ)

=

(1− τk)z
(i,k)

τ1−z(i,k)
k φ

(
Σ
− 1

2
1 (x(i,k) − µ1)

)
ρ

(1− τk)1−z(i,k)τ z
(i,k)

k φ

(
Σ
− 1

2
0 (x(i,k) − µ0)

)
(1− ρ) + (1− τk)z(i,k)τ1−z(i,k)

k φ

(
Σ
− 1

2
1 (x(i,k) − µ1)

)
ρ

We then for both methods find the households with the highest H order statistics of the set {p̂(i,k) : 1 ≤
i ≤ Mk, 1 ≤ k ≤ K}, as well as identify households who are classified as poor (i.e. p̂(i,k) > 0.5). Since we
do observe information on reported earnings in our sample we can assess the effectiveness of the tests in
several ways: by finding the fraction of poor households among the selected 3000 households; by finding the
fraction of poor households among the households predicted to be poor; by comparing estimated τ1,...,τK
with the true misreporting rates across villages. We also assess how our algorithm improves upon a naive
method that ignores misreporting and randomly selects H households from the set of households that are
reported to be poor.

Results and Discussion

Figure 1 shows the estimated misreporting rates with true misreporting rates for each discriminative and
generative EMs.

Figure 1: Estimated versus true misreporting rates

Table 1 reports mean square errors and correlation coefficients between estimated and true misreporting
rates for each method.

Table 1: Mean square errors and correlation coefficients between estimated and true misreporting rates

As it can be seen, the discriminative EM does significantly better than the generative EM. For the
discriminative EM, the mean square error is 0.00022062, and the correlation coefficient is 0.94214. For the
generative EM, the numbers are 0.010148 and 0.60304, respectively.

Figures 2 shows the fraction of poor households among those H = 3000 selected households for three
different methods over 200 simulations.
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Figure 2: Fraction of poor households among selected 3000 households (200 simulations)

The mean rates corresponding to discriminative EM, generative EM and naive method are, 0.9483, 0.3518
and 0.5807, respectively.

Figures 3 shows the fraction of poor households among the households who are predicted to be poor for
three different methods over 200 simulations.

Figure 3: Fraction of poor households among those predicted to be poor (200 simulations)

The mean rates corresponding to discriminative EM, generative EM and naive method are, 0.7771, 0.3520
and 0.5807, respectively.

There are two important things to note. First, the naive method that ignores corruption allocates 58%
of funds on average to poor households (Figure 2). The discriminative EM improves the allocation to
about 95%. Thus, additional 37% × 3000 = 1110 households who desperately need aid receive it if the
discriminative EM is used to allocate aid. The second noteworthy thing is that the generative EM does very
poorly, substantially worsening the allocation of the naive method. The main reason is that the underlying
assumption that the features are normally distributed is wrong. The distribution over the first several
principal components exhibits very fat tails.

Conclusion

In this project we build and assess performance of EM algorithms in fighting corruption and allocation of
scarce financial aid to the poorest households in the society. While the naive method that ignores corruption
allocates about 58% of resources to poor households, our best performing algorithm, discriminative EM,
brings up this number to 95% - a huge success! We also demonstrate that the standard, generative EM
performs very poorly, which is due to the fact that features are not normally distributed, but rather come
from a distribution with fat tails. The method used in this paper has a potential to improve classification
in a wide variety of situations in which labels are imperfectly observed. Further research could also improve
upon the generative EM by making alternative assumptions over the distribution of the features.
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