End-to-end Driving Controls Predictions from Images

Jan Felix Heyse and Maxime Bouton
CS229 Final Project Report

December 17, 2016

Abstract

Autonomous driving is a promising technology to improve trans-
portation in our society. In this project we propose an end-to-end
approach to learn how to steer a car autonomously from images.
We trained Convolutional Neural Networks (CNNs) to output steer-
ing wheel angle commands from front camera images centered on
the road. Finally, we explored some smoothing of the predictions
by exploiting the temporal structure of the data.

1 Introduction and Previous Work

In 2015, the DOT reported that more than 35,000 people died on
US roadways due to crashes. 94% of these crashes happened be-
cause of human error [1]. With the progress that has been made
over the past years in machine learning and artificial intelligence,
we are convinced that autonomous driving has got the potential to
significantly reduce that number. One of the biggest challenges of
autonomous driving today is to handle the uncertainty when acting

in the real world.
In most of the current self-driving technologies, the input pro-

vided to the system is based on human engineered features. This
refered to as mediated perception [2]. The control of the vehicle
is based on criteria such as vehicles position and velocity and po-
sition of the ego car in the lane. Based on these heuristic criteria
the embedded controller will optimize some cost functions to drive
the vehicle safely. However, these cost function and heuristic mod-
els are hard to find and since they are based on human heuristic
they are no guarantee of optimality. Another drawback is that the

resulting systems are not well scalable to different scenarios.
This leads to the development of end-to-end approaches ([2]

and [3]). The idea consists in removing every modeling assump-
tions and engineered features and let the system learn how to ac-
complish the desired task using supervised learning techniques.
Using an end-to-end approach could lead to a robust driving ca-
pability while relaxing any modeling assumptions. The work de-
scribed in [3] is a promising step in this direction, using Convolu-
tional Neural Networks (CNNSs).

The input of the system is a raw image from a camera on the
autonomous vehicle, and the output is a driving control. In this
project we will focus on predicting steering wheel angle commands
from a center camera view. We will train a predictor using an avail-
able labeled dataset and analyze its generalization performance.

2 Dataset

2.1 Description

The dataset for our project has been provided by Udacity [4]. As
part of their efforts towards an open source self-driving car, Udac-

e R

Steering command

Raw Input

Figure 1: Block diagram representing the input output behavior of our
system

ity broke down the problem into a series of challenges. The goal
of one of these challenges is the prediction of steering angles from
images, and the provided datasets contain the data neccessary for
our purposes. In particular, they comprise images from three cam-
eras at the front of the car at 20 frames per second with a resolution
of 640x480 pixels, as well as the steering wheel angles and fur-
ther information relevant for car controls at a higher rate. From the
three front cameras, positioned at the left, center, and right of the
car, we decided to use the center camera. Due to computational
limitations we also decided to use one of the datasets only, which
was 12:40 minutes of driving on a sunny day.

2.2 Pre-processing

After extracting the data from the available dataset we used three
pre-processing steps to prepare it for our calculations. First, we in-
terpolated the steering angles to the time stamps of the front camera
images. Next, we created clean folders with the used data only, i.e.
the center camera images and their associated steering angles, and
renamed the files to make them more easily processable. Lastly,
we went through the chosen dataset and excluded those sections in
which the car stopped at red traffic lights and where the car turned
onto a different road. The first was to avoid a bias on these situa-
tions due to a very high number of practically identical images and
steering angles. The second was because intentional turns of the
driver were not part of this project. In order to predict them further
information on the intention of the driver would be necessary. The
final dataset we used consisted of 12,200 samples corresponding to

10:10 minutes of driving.
Besides this general pre-processing, the different approaches

required further individual processing which will be presented in
the respective sections.

3 A (Classification Task

The task of predicting the driving controls was approached in three
different ways of increasing complexity. The first two treated the
task as a ternary classification problem with the three classes left,
straight, and right, while the third treated the task as a regression,
aiming at the exact prediction of the particular steering command.
The motivation for starting with a classification problem was that it

would be simpler and therefore more appropriate to find a baseline
approach and that it would provide the prediction accuracy as an

intuitively understandable metric.
In order to obtain the classification labels from the continuous

steering command variable, we set the thresholds based on some
image-steering command pairs and on the steering command dis-
tribution in general. Table 1 shows the distribution of the labels
among the used samples.

Left | Straight | Right | Total
Number | 3753 5619 2828 | 12200
Fraction | 30.8% | 46.1% | 23.2% | 100%

Table 1: Classification label distribution

3.1 SVM as a Baseline

Our first approach to the image classification was using a Support
Vector Machine (SVM). We converted the images from color to
grayscale and divided every image into sub-images of size 20x20
pixels. As features we reported then minimum, maxmimum, and
average grayscale values of the sub-images. The dataset was split
up into a training and a test set (see table 2).

Training | Test
Number 9760 2440
Fraction 80% 20%

Table 2: SVM training and test set sizes

The SVM learning was implemented using the scikit-learn ma-
chine learning python library. We chose a Gaussian Kernel with a
7 value of 0.0001.

3.2 A CNN based Approach

Training | Validation | Test
Number 7320 1464 3416
Fraction 60% 12% 28%

Table 3: CNN training, validation, and test set sizes

CNNs are a model similar to regular Neural Networks, which
does particularly well on images. Just like Neural Networks, Cnns
use hidden layers between the input and the output. One key differ-
ence is that in case of regular Neural Networks these hidden layers
are all fully connected. When working with images as input, this
input has the three dimensions image height, image width, and the
color representation (in our case the tree BGR values). Fully con-
necting all layers then would lead to a hardly manageable number
of connections. CNNs instead connect each neuron in a hidden
layer for the most part only to a small part of all the neurons in
the preceding layers, depending on the type of layer. The types we
used for our problem were the following [5]:

e Convolutional Layers (CONV) comprise a specified number
of different filters, each moving through the input and acting
at each position on a small, local subset of the input only.
Further parameters are the filter sizes as well as the stride
when sliding through the input.

o Rectified Linear Unit Layers (ReLU) apply the activation func-
tion x — max{0,x}.

e Parametric Rectified Linear Unit Layers (PReLU) extend the
ReLU layers with a small negative slope at the otherwise
zero-slope parts. This new slope is learned.

e Pooling Layers (POOL) reduce the spatial size of their input
and thereby the complexity of the whole model, which helps
preventing overfitting. The reduction factors are the parame-
ters to this type of layer.

e Dropout Layers (DROP) help to prevent overfitting by setting
neurons to zero with a specified probability.

e Fully Connected Layers (FC), as the name indicates, have
neurons connected to all neurons of the preceding layer. They
are typically used at the very end to compute the class scores,
and it is necessary to specify the output dimension.

A common layer pattern is the following [5]:

INPUT-> [[CONV->RELU] *N->P0OOL?7] *M
->[FC->RELU] *K->FC->0UTPUT

Here N, M, K are integers indicating the number of repetitions of
the pattern.

The optimizer:
In order to train the network we used categorical cross entropy as
the objective function. This is a multiclass version of the logarith-
mic logistic loss that is computed the following way:

YY) vijlogpi;

i=1j=1

CrossEntropy(y,p) = —%
In this equation m is the number of samples, n is the number of
classes, y;; is 1 if example i was assigned to label j, and p;j is the
probability of assigning i to j. We then used Stochastic Gradient
Descend (SGD) on this loss function with learning rate decay after
each update. We also decided to use the momentum update version
as recommended in [5] and [6] for faster convergence.

4 A Regression Task

Using CNNS for the classification task gave us some first experi-
ence and a good insight into the work with CNNs in general. How-
ever, for autonomous driving in the real world it is insufficient to
make a prediction to the three used classes only. We therefore de-
cided to switch to a regression task, which consists in predicting
the actual steering command instead of just classifying the direc-
tion. The output space is now continuous. As the input still has
the same shape it made sense to start with a network architecture
similar to that for the classification task. To find the best architec-
ture for the regression we gradually increased the complexity of the

network based on the work of [3] and [5].
The main modifications with the network used for regression

are the following:

e Change of the activation layers: The ReLU activation lay-
ers have a zero gradient zone that can lead to neurons dy-
ing off during the optimization process. That is why for the
CNN regression we switched to PReLU layers. These ad-
dress that issue by adding a very small slope at the otherwise

RelU output PReLU output

learned slope &

x ‘ x

Figur672: Activation functions of the ReLU and PReL.U layers

zero-slope zones as represented in figure 2. The value of the
slope is learned during the optimization.

e Change of the optimizer: SGD was converging fast enough
for the classification task but since the output space is much
larger we needed another optimizer with better convergence
properties to deal with the regression problem. The opti-
mizer we chose was Adam, following the recommendations
in [5]. Experiments showed that Adam outperformed SGD
on minimizing the mean squared error loss.

5 Results
5.1 Classification

We started off by orientating at a configuration used for the compa-
rable cifarl0 case [6]; the main modification we made was taking
out the dropout layers. The architecture used for the CNN classi-
fication showed generally good results. After only 30 epochs we
obtained 97% accuracy on the test set. The final architecture for
the CNN classification problem is the following:

INPUT->[[CONV->RELU] *2->P00L] *2

->[FC->RELU] *1->FC->0UTPUT
Optimizing the categorical cross entropy with SGD lead to the

learning history presented in figure 3 and figure 4.

1.2 T T T T T
—training loss
1k —validation loss||
test loss
0.8} i
E 0.6 F
0.4+ i
0.2+ i
0 L I T n
0 5 10 15 20 25 30

epoch
Figure 3: Categorical Cross Entropy loss vs number of epochs for the three

parts of the dataset

Figure 6 shows some output of the layers in the CNN. We can
see that the network learned that the interesting part of the image
(the red parts in the last layer) are in the center. If we look at the
input image, this corresponds to the border of the road.

5.2 Regression

After dealing with the classification task we tried to predict the ac-
tual steering command i.e. having a continuous output space. This
task is more complicated and required more iterations in the net-
work architecture and parameters. Naturally, we decided to start

100

[ee]
(=
T
L

accuracy [%)]
2
T
1

401 —training acc
—validation acc
test acc
20 Il Il Il Il T
0 5 10 15 20 25 30

epoch
Figure 4: Accuracy vs number of epochs for the three parts of the dataset

with the same architecture that we used for the classification. Un-
fortunately, this lead to poor performance (Model 1 in table 5), con-
verging very quickly to a high mean squared error (MSE) value.
We suspected that the ReLU activation layer was responsible be-
cause the rapid convergence could be an indicator of many neurons
dying off due to the possible zero-gradient through them. In order
to fix this we switched to PReLU activation layers (see section 4).
The result was a significant improvement in the loss (for both the
training and the test loss).

1.5 T T T T T
1k i
0.5F]
=
2
-
.2 0F 8
el
9]
=
=1
05+ i
-1k i
-1.5 - 1 1 1 1 1
-1.5 -1 -0.5 0 0.5 1 1.5
truth

Figure 5: Predicted vs true steering command on the whole dataset using
the final regression model

The second step of tuning the network architecture was based
on the work from [3] and recommendations from [5]. Basically, we
gradually increased the complexity of the network by adding lay-
ers and varying parameters. Since the output space is much larger,
the intuition was that we need to find more hidden feature in or-
der to reach the desired target. The presented architectures differ
in the number of [CONV->RELU]*2->P0O0L blocks, the convolu-
tional filter size, and the use of dropout layers. The architectures of
the different iterations are summed up in table 4. Table 5 presents
the corresponding performances, with the model 5 architecture per-
forming the best. The figures 5, 7, and 8 visualize the results and
the learning history for this architecture.

Input
RelU 1
RelU 2

. Convolutional2_|
{
)

—
1’ Convolutional 1 |
2

-

11N

nE

|
-
]
|
-
et

Pooling 1
RelU 3
RelU 4
1 Pooling2
] : ooling
£
Fully-Connected 1 |
RelU S
Fully-Connected2 |

=
]
=
HO]
3
)
=
=
o
o

Figure 6: Visualization of some convolution filters for the classification architecture

Model Architecture
1 INPUT->[[CONV-> RELU]*2->P0O0L] *2 ->[FC-> RELU] %2 ->FC (CONV filter size 3)
2 INPUT->[[CONV->PRELU] *2->P0O0L] *2 ->[FC->PRELU] *2 ->FC (CONV filter size 3)
3 INPUT->[[CONV->PRELU] *2->P0O0L] *2 ->[FC->PRELU] *2 ->FC (CONV filter size 7)
4 INPUT->[[CONV->PRELU] *2->P00L->DROP] *3-> [FC->PRELU] #*2->DROP->FC (CONV filter size 3)
5 INPUT->[[CONV->PRELU] *2->P00L] *3 ->[FC->PRELU] *2 ->FC (CONV filter size 3)
Table 4: The different architectures used for the regression task
1.2 T T T T T T 1 Model | Training Loss | Validation Loss | Test Loss | Number of epochs
1 T treming mse I 0.9572 0.8855 1.1410 6
5 - test mse [2 0.0416 0.1242 0.1239 60
= 3 0.0304 0.1409 0.1542 60
o 08r 1 4 0.1814 0.2887 0.6393 120
g 5 0.0066 0.0519 0.0601 90
g 0.6 - E
f i | Table 5: MSE performance for the different regression architectures
g tem can be modeled as a Hidden Markov Model. The transition
0.2 \L\/\/\/\) 1 and observation distribution, however, are hard to come up with
0 ! ! ! ! in this case because of the lack of a physical model. The CNN
0 10 20 30 40 h50 60 70 80 90 represents the sensor that outputs a measure of the actual steering
epoc

Figure 7: Mean squared error (MSE) vs number of epochs for the three
parts of the dataset using the final regression model

0.35 T I
—training mae
0.3F —validation mae|]
-
S test mae
g T
15} | |
E l
e I]
12}
Q |
© |
=] A AA A 4
[\ [\
0 i “‘
5 0.1r ‘ ‘V‘ 4
\
0.05 L L w L ‘ A Y
0 10 20 30 40 50 60 70 80 90

epoch
Figure 8: Mean absolute error (MAE) vs number of epochs for the three
parts of the dataset using the final regression model

6 Smoothing using the Temporal Structure
of the Data

From the input image, the CNN gives a noisy measurement of the
steering, which could be harmful if implemented on a real system.
We decided to exploit the temporal structure of the data to smooth
the prediction from the CNN. The underlying structure of the sys-

command which is the hidden variable, hence this new prediction
process assumed that the CNN has been pre-trained and does not
involve learning the weights of the network anymore. In order to
overcome the modeling issue we decided to simplify the structure

as represented in figure 10.
The main idea is that two consecutive steering command are

unlikely to be very different, and that we should use this intuition
in the prediction process. For this purpose we implemented two
linear models: a first-order model using the previous command,
and a second-order model using the two previous commands.

First-order: §' = wy s&yy +was'™!

Second-order: §' = wy sty +Was' 4 wys' 2

Here, s{,, is the CNN prediction at time ¢, s'1 is the actual
steering command that we experienced at time ¢ — 1, and §’ is the
steering estimate. In order to find the weights w; we can solve
a simple linear regression problem using the actual steering com-
mand and their associated predictions. The objective function to
minimize in the first-order case is:

[§t — (wlséNN +W23t71)]

agE

] 1
TrainLoss(w,s,scyy) = —
m3

— o~ oM
=) & e = E = b 2 2
3 < =l © < © 2 2 2
c c ~ e i3 o~ e 13 m o o o
= s 2 o 2 |uw 18 2 |8 Tl e 2 |8 L w |g~|oela
5 2 2 8 3 ¥ & =28 =2 ¥ 38 3 2 &5(25 82
= =1 1 =1 - =1 I =1 - = v = O =1 O =1 B = B~ A = il =
£ o = |o| =l |8 Is| =l I's| |=| [8] |e] |z [|= |3 |8|l&|8]| &S
= a |z = |& 2 a |z a |& 3| || |2 || |& A (a| 1) || 1SS
< = = < = = < L <
o (=} o o o o = = =
o o o o o o E ‘E E
=R O N R E
TTHETTEE RS EEwE-.
e y . = R
price -
= I O N i N) O L S
0 R | oo g -
B e < . L o] |

L

rodich

-0.2203

T S
M | Fiaesl |

O T I T

Figure 9: Visualization of some convolution filters for the final regression architecture

Figure 10: The underlying temporal structure of the data

Model W1 Wy W3
First-order 0.0420 | 0.9535 N/A
Second-order | 0.0165 1.829 | —0.8482

Table 6: Weights of the linear temporal models

RMS of CNN predictions 0.203156
RMS of first-order smoothing 0.488451
RMS of second-order smoothing | 0.284186

Table 7: RMS of the different models

T
—true

—Ccnn
1%t order
—21d order]

0.5

steering command

-0.5F 1

1600

2000 2100 2200 2300
time

Figure 11: Comparison of the CNN predictions to the smoothed ones

1700 1800 1900 2400

Exploiting the temporal structure smoothed our predictions. The
new predictions are dominated by the preceding time steps and
therefore lag behind the actual steering command, while the pure
CNN predictions are noisier but follow changes in the true steer-
ing commands more promptly. The root-mean-square deviations
to the true steering commands as presented in table 7 confirm this
observation

7 Conclusion and Future Work

The results show the capability of Convolutional Neural Networks
to learn complicated tasks from images. We were able to achieve
reasonable performance in predicting the steering (less than 0.1

MSE on the test set) for the best architecture. Moreover, the first
part was only a supervised learning task and we did not use any
temporal information. The last section of this report showed how
we can smooth the predictions using this information. This smooth-
ing step could be very interesting if we were to implement the algo-
rithm as a controller on a real car. However, many challenges still
need to be addressed to come to this point. Indeed, our network
was trained on a short sequence of images (roughly 10 minutes of
driving) with the same traffic and weather conditions. To make
sure that the network is able to generalize well even in unseen en-
vironment we could use data augmentation techniques as they used
in [3]. Another interesting addition to the project could be to add
the temporal structure during the training. Using Recurrent Neu-
ral Networks is a possible follow-up, or finding a way to combine
the Hidden Markov Model described in section 6 with the CNN
algorithm.

References

[1] Daniel V McGehee, Mark Brewer, Chris Schwarz, and
Bryant Walker Smith. Review of automated vehicle technol-
ogy: Policy and implementation implications. 2016.

[2] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao.
Deepdriving: Learning affordance for direct perception in au-
tonomous driving. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2722-2730, 2015.
[3]

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

[4] Udacity. Open sourcing 223GB of driving data
collected in Mountain View, CA by our Lin-
coln MKZ. https://medium.com/udacity/

open-sourcing-223gb-of-mountain-view-driving-
data-£6b5593fbfab#.a9fdmlkk5, 2016.

[5] Fei-Fei Li, Andrej Karpathy, and J Johnson. CS231n: Con-
volutional Neural Networks for Visual Recognition. http:

//cs231n.github.io/convolutional-networks/, 2015.

[6] F.Chollet. Train a simple deep cnn on the cifarl0 small
images. https://github.com/fchollet/keras/blob/

master/examples/cifar10_cnn.py, 2015.

