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I. Introduction

Indoor ventilation

In the United States, around 40% of the energy con-
sumption is due to buildings, and a significant part of it
comes from temperature management. In some areas,
the climate is convenient to natural ventilation. Califor-
nia’s mild climate is well suited for a night-time natural
ventilation. Instead of using a large amount of energy
in air-conditioning, and forced ventilation, the idea is
to simply use the fact that the outside temperature is
low during the night. Then one just needs to open the
appropriate windows during the right amount of time
to efficiently renew and cool the air inside the building.

The Y2E2 building has been built in 2008 and im-
plements this smart indoor ventilation strategy. There
are a few large windows on top of it that can be opened
for ventilation. For now the windows opening strategy
is quite simple and simply reproduce some pattern peri-
odically. But if the opening strategy could predict how
much time we want to keep the windows open to get to
a specific temperature, it could also decrease the use of
additional temperature management systems. This will
be the primary objective of this project.

Many sensors were implemented in the Y2E2 build-
ing, giving us access to valuable informations such as
the temperature at different points, the state of the win-
dows (open/closed), the outdoor temperature, etc.

Wind Engineering Group

The Wind Engineering group, which is part of the
Civil and Environmental Engineering department at
Stanford University, is currently working on a tool for
architects that could allow them to efficiently implement

a night-time natural ventilation. This tool, called box-
model, aims at predicting the evolution of the temper-
ature in a building, depending on its size, the material
used, the outdoor temperature, etc. This box-model is
being refined through different strategies : CFD and
theoretical modeling.

The temperature in the building obeys a differential
equation whose coefficients are not precisely known.
Using the large amount of data gathered since a few
years could also help us estimate the coefficients of the
differential equation. Then, instead of directly predict-
ing the temperature in the building, we would be able
to predict the differential equation it satisfies, and then
the temperature. This will be the secondary objective of
this project.

II. Data and Preprocessing

Predicting with estimated values

In this work we try to predict the indoor temper-
ature of the Y2E2 building depending on many other
parameters, such as the outdoor temperature for in-
stance. One could argue that it doesn’t make sense to
predict on day d the indoor temperature for the day
d + 1 because you don’t have access to the correspond-
ing outdoor temperature, which is true. Instead we will
consider that we have access to weather forecasts that
we will consider to be equivalent to the real datas of
d + 1. The following assumption is made:

Toutdoor(d + 1) = Tpredicted(d + 1) (1)

Natural Features
The Y2E2 sensors record the following informations:

• Indoor Temperature at the 1st, 2nd and 3rd floor of
each Atria (A,B,C,D);
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• Outdoor Temperature at 3 different points (to sim-
plify, we will average over the 3 points);
• Windows state (open/closed);
• Total Solar Irradiation;
• Wind Speed at 2 points (we will average over the 2

points);
• Wind Direction at 2 points (we will average over

the 2 points);
• Time.

Figure 1: Example of data recorded in the Y2E2 building

Preprocessing

The measurements come from a small software
called SEE-IT. Measurements between 01/01/2010 and
12/31/2015 with a 10-minutes time-step have been used.
One of the main problems that was encountered with
the data is that it was absolutely not well suited for Mat-
lab. There was a lot to do to convert each temperature
and date to the right format. Then I had to split the
datas in days (between 6pm on day i and 6pm on day
i+1). Many days (60% of them) were not complete and

did not have the 145 points that they should have (6
points per hour, 24 hour; The first temperature of the
following day is also included). Instead of interpolating
the datas for the days that lacked only a few points, I
have decided to do without all these days. This reduces
a lot the number of days available. Anyway, the 859
remaining days should be enough to do some accurate
predictions.

There was a lot of noise on the data, and since vari-
ation that occur in less than 30 minutes are not valuable
informations, some smoothing has been done using a
locally weighted linear regression. The parameter τ that
has been chosen is τ = 5× ∆t = 50min.

Figure 2: Smoothing of the Indoor Temperature

III. Features

Selecting Training and Testing Sets

We have a total set S of 859 days. For each of these
days, we have one measurement for every 10 minutes of
:

• Indoor Temperature;
• Outdoor Temperature;
• Windows state;
• Total Solar Irradiation;
• Wind Speed;
• Wind Direction;

Every time we launch a linear regression or a weighted
linear regression, 90% of the set S is randomly selected
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and becomes Strain, while the 10% remaining becomes
the set Stest. This random selection is done everytime a
regression is made. That means that if we launch a linear
regression 10 times using this code, it will produce 10
different sets of predictions. When we want to estimate
the accuracy of a type of regression, we will run the
same code 10 to 100 times and average the loss values.

Time-related Features It appears that when we try to
predict the temperature in the building on December
20 for instance, we give the same importance to tem-
perature measurements that were made during summer
as those that were made during winter. Intuitively, we
would want our algorithm to be able to model the im-
pact of the moment of the year. The problem with date
is that there are more days between December 20, 2010
and December 20, 2011 than between December 20, 2010
and July 20, 2011. That means that we have to consider
a feature that would be periodical, and not simply lin-
ear. We will use the following two feature to model the
impact of the date:

newFeature1 = cos(
2π

365
× Day)

newFeature2 = sin(
2π

365
× Day)

The value of Day is one for January 1, while it is 365
for December 31. Implementing these two new features
in the linear regression gave a 10% improvement.

Loss The loss has been defined the following way:

Loss =

√√√√ 1
|Stest| ∗ 145 ∑

y(i)∈Stest

(y(i) − h(x(i)))2

From a physical point of view this is an estimation in
◦C of the error between the measured Indoor Tempera-
ture and the predicted values.

IV. Linear Regression

Linear Regression Let’s say that we want to predict
only the temperature in the Atrium A at the 3rd floor
(A3). We will first use a linear regression assuming a
normal distribution on the error ε (defined by ε(i) =

y(i) − θTx(i)). The average loss estimated is 0.64 degrees
Celsius. This seems to be a pretty accurate prediction at
first, but let’s see if we can reduce the loss estimation
under 0.5.

Figure 3: Prediction using a Simple Linear Regression

Locally Weighted Linear Regression One can expect
much better results using a locally weighted linear re-
gression. The weight is defined as :

w(i) = exp(− (x− x(i))2

2τ2 ) (2)

This has been done for several values of τ and it appears
that we get the best results for tau = 108. It might seem
high, but no scaling has been done on the data.

Figure 4: Loss vs. Tau

The minimum Loss obtained using this method is
0.58◦C which is slightly better than with the simple
Linear Regression.
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V. Functional Regression

Naive Approach We define the following distance
function:

d(x(i), x(j)) = ‖x(i) − x(j)‖2
2

Using this distance, we have performed a functional
regression, and the estimated loss is 0.806◦C, which is
not even as good as a linear regression. The problem
is that the input data has not been scaled. The order of
magnitude of the Windows State is 1, while the order of
magnitude of the Total Solar Irradiance is 103.

Parametric Functional Regression This time we will
split the distance function between the outside temper-
ature part, wind speed part, wind direction part, etc.
That means that we will weight the distance depending
on the nature of the data.

d(x(i), x(j)) =θoutTemp‖x(i)outTemp − x(j)
outTemp‖

2
2

+ θwind‖x
(i)
wind − x(j)

wind‖
2
2

+ θsolar‖x
(i)
solar − x(j)

solar‖
2
2

+ ...

In the following example, only the θ related to the
window state is modified. By optimizing the Loss with
regards to each component of θ, we managed to get a
0.498◦C error.

VI. Differential Equation

Idea The estimations that we get using linear and func-
tional regressions are quite good but lack of "coherence".
It seems like the temperature at t is not related at all
to the temperature at t− 1. The system predicts what
happens at t based on every single measurements that
has been done.

Another interesting approach is to model the time
evolution of the indoor temperature using a differential
equation. The parameters of this differential equation
can then be estimated using a neural network. What
is interesting about this strategy is that it makes more
sense from a physical point of view. The parameters of
the differential equation have a physical meaning.

Figure 5: Parametric Functional Regression - Loss for different
values of θWindowsState

Implementation We will model the behaviour of our
indoor temperature the following way :

dTindoor

dt
= f (t, Tindoor(t), Inputs(t))

Our Inputs are actually the features that were defined
above: Outdoor Temperature, Total Solar Irradiance,
etc. The approach is a little different than before: we
will consider the indoor temperature as an input, and its
derivative as the output. To construct the time derivative
we use the following scheme:

dTindoor

dt
=

Tindoor(t + 1)− Tindoor(t− 1)
2× ∆t

To clearly define our problem, we set yi = dTindoor
dt (ti),

x(i) = [ti, Tindoor(ti), Isolar(ti), ...], and we will use a neu-
ral network to estimate the function f so as to minimize:

∑
i
‖yi − f (xi)‖2

2

Once f is estimated, we can compute the indoor tem-
perature simply by solving the differential equation, and
the Loss is defined as before.

This strategy has been achieved using the "Neural
Net Fitting" app of Matlab. 40 neurons and one neuronal
layer have been used. The average Loss is 0.56◦C. This
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is not as good as the Parametric Functional Regression,
but this time the neural network has a physical meaning
and can be used to better understand how the physical
system works.

Figure 6: Matlab Neural Network

VII. Conclusion

In order to get a better idea of how the predictions
look like, here are the smoothed data and three predic-
tions achieved through different methods.

Figure 7: Indoor Temperature Predictions

Linear Regression 0.606◦C
Locally Weighted Linear Regression 0.580◦C
Naive Functional Regression 0.806◦C
Parametric Functional Regression 0.498◦C
Differential Equation and Neural Network 0.560◦C

Table 1: Prediction Performance

It appears that the Parametric Functional Regression
gives us the best results.

Having an efficient tool to predict the temperature
inside the building allows us to try different strategies

for the opening of the windows. Moreover, it could
be interesting to implement a reinforcement learning
strategy for the windows. This can be a very interesting
tool for architects and energy consumption optimization.

VIII. Future Work

The Differential Equation part might be very useful to
the development of the "box model". I believe some
improvement can be made and can help us better under-
stand the impact of different parameters on the indoor
temperature. I think that it might be interesting to fo-
cus on a specific day rather than trying to estimate a
differential equation that would work for every day.
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