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Abstract:  
 
We seek to develop accurate models for predicting the early-career value of pitchers in Major League Baseball                 
(MLB) based on statistics and data from their first season. More specifically, we use Wins Above Replacement                 
(WAR) as a measure of player value, and our goal is to be able to accurately predict whether or not a pitcher will                       
be worth at least five wins (cumulative WAR > 5) in years 2-4 of his career, based on features from his first year.                       
We apply a variety of feature selection and evaluation techniques on a variety of different classification models in                  
order to determine the best way to make these predictions. This problem proved to be surprisingly challenging                 
using feature vectors consisting mostly of traditional pitching statistics, which provides motivation for future              
work in deriving more informative metrics that generalize better to future success. 
 

Introduction  
Major league baseball players typically     

become free agents for the first time after their first          
few years in the MLB, so our goal is to make           
predictions about a pitcher’s cumulative Wins      
Above Replacement (WAR) during the period where       
he is still under the control of his first team, based on            
data and statistics from his rookie year. More        
specifically, we’d like to make predictions about a        
pitcher’s value over the second, third, and fourth        
years of his career. WAR is a statistic intended to be           
an all-inclusive measure of a baseball player’s value;        
intuitively, it seeks to answer the question “How        
many more games does a player’s team win by         
having that player rather than a readily-available       
minor league replacement?” A player with a WAR        
of 2.0, for instance, is thought to be worth two more           
wins to his team over the course of a season than a            
readily-available replacement player. Thus, it     
provides a decent estimate of a player’s true value         
(much more so than some other traditional metrics).        
The formula to compute WAR is complex, and not         
particularly valuable to look at in full for our         
purposes, but it is important to note that it depends          
on a pitcher’s statistics, as well as the quality of          

opponents he’s faced, the quality of his team’s        
defense, and where he played, mostly in order to be          
able to make comparisons to the hypothetical       
league-average pitcher. 

Initially, we tried to train regression models       
to make predictions about players’ WAR during this        
early-career period. However, we realized that our       
data set was extremely right-skewed; most players       
ended up with very similar WAR values, with only a          
handful of standouts far exceeding the rest by a wide          
margin. We tried several different regression      
models, but all had trouble dealing with these few         
outliers, and we decided that perhaps being able to         
predict a one or two-win difference over a three-year         
period was less useful than being able to identify         
future superstars. Thus, we switched our focus to        
distinguishing between two classes of players: the       
first consists of average to decent players, who        
might be solid Major League contributors but are not         
superstars, whereas the second consists of the future        
All Stars, Cy Young winners, and MVPs. We        
defined any player worth at least five wins over the          
three-year period as a member of our second class,         
which was right above the third quartile of our data          
set. The inputs to our classifiers were feature vectors         

 



2 

made up mostly of aggregated statistics from       
players’ rookie seasons. The classifiers would then       
output a label, either zero or one, where a one          
represented a predicted future star. 

 
Review of related literature 

After doing some digging, we struggled to       
find much existing research that attempted to make        
the predictions we hoped to be able to make. In          
some ways, this is not entirely surprising; it is almost          
certain that all (or nearly all) MLB teams are         
employing analysts internally to apply statistical      
methods to evaluate players. As these discoveries       
represent a competitive edge, however, results are       
unlikely to be shared. Baseball fans are notorious        
statheads, though, so there are many blog posts and         
senior theses out there about people attempting to        
predict player performance in some sense, like [1],        
[2], and [3]. 

However, our premise is a bit different in a         
couple of important ways. First of all, predicting        
performance for pitchers is more difficult than for        
position players. As noted in [1], there’s an old         
saying that “There’s no such thing as a pitching         
prospect,” because a pitcher can blow out his arm on          
any single pitch, and there are a lot more injuries          
common to pitchers that can completely derail a        
career than for position players. Second, much of the         
existing analysis we turned up sought to predict a         
player’s MLB value or performance (or even       
whether they were likely to make the major leagues)         
based on minor league statistics, whereas we hope to         
use early MLB statistics to predict future value.        
These are inherently different problems, though      
some techniques might be useful to both. 

One problem we faced during our project       
was the fact that we had many more examples of          
regular players as opposed to future stars, which        
meant that initially, our classifiers simply learned to        
predict mostly the larger class. In order to combat         
this for our boosting algorithm, we employed some        
of the undersampling and oversampling techniques      
described in [4], which tended to hurt our accuracy         

but improve our recall. We also weighted training        
examples differently when training our SVMs,      
attaching more weight to examples from the smaller        
class. 
 

Dataset and Features 
Our features came primarily from Sean      

Lahman's database, a free online database that       
compiles MLB stats dating back to 1871. This        
database contained pitching statistics for each year,       
including stats like wins, losses, ERA, and other        
traditional metrics. For our labels, we used a        
separate source, Baseball Reference, to obtain each       
player's yearly WAR. We then labeled rookies as        
high-value if their total war over the next 3 years          
was greater than 5, and low-value if it was less.          
Originally, we had hoped to also use data from the          
PITCHF/x dataset, which contains very advanced      
information on every pitch throw in in an MLB         
game, but since this system is relatively new, we         
would only have 5 years of training data to work          
with, which we did not think would be enough to          
adequately train our classifiers. Ultimately, we      
decided to use data going back to 1985, which would          
give us a large training set, but not include data that           
is so old it wouldn’t be relevant to modern pitchers.          
Our overall data set consisted of 1,017 pitchers total         
(all of the rookies from 1985-2013 who played in         
each of the next three years), 813 of which we used           
as training examples (193 high-value) and 204 of        
which we used as test examples (53 high-value). See         
the attached box plot of our data set: 
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For our features, we selected selected 20       
important stats from each pitcher's rookie season,       
shown in the table below. Our goal in selecting         
features was to make sure our feature set was         
informative enough to make predictions but not too        
large that it suffered from overfitting. For each        
feature, we also normalized the data points to have a          
mean of zero and a standard deviation of one. We          
also transformed the feature vector in some of our         
models, using Gaussian and polynomial kernels for       
our SVM. In addition, we also used principal        
components analysis in our polynomial kernel model       
to reduce the dimensionality of our feature vector        
from 20 to 12 in order to avoid overfitting. 
 

Wins Losses ERA Win % 

Inning
s 

Strikeouts SO/IP Games 

Hits Hits/innin
g 

Home 
runs 

HR/IP 

Walks Walks/IP Opp BA R 

ER WAR Age Team 
runs 
saved 

 
 

Methods 
 

We used the scikit-learn machine learning      
library for Python, cited in [5], to build and test all           
of our models. 

We used support vector machines as one of        
our models because the hinge loss function seemed        
like a reasonable choice in our objective function.        
Recall that the hinge loss penalizes based on the size          
of the margin: 

Our intuition was that a larger margin means that         

we’re more confident in our predicted classification,       
so optimizing for large margins seems like a        
reasonable choice. SVMs also have the benefit of        
being able to use different kernels, like the Gaussian         
kernel, or a polynomial kernel, to generate nonlinear        
decision boundaries, which would help us capture       
patterns which we would not be able to with a          
simple linear decision boundary. In our model, we        
also increased the weight for our data points of         
high-impact players in order to balance to two        
classes. In order to find the optimal hyperparameters        
for the model, we used a library called Optunity and          
tested the hyperparameters using 5-fold     
cross-validation and scoring models based on the       
area under the curve plotting true positives against        
false positives.  

We also used principal component analysis      
with some of our SVM models, which reduces the         
dimensionality of our training data by projecting the        
feature vectors onto a lower dimensional subspace       
that still captures most of the variance in the data.          
Recall that in PCA, we find the top k eigenvectors of           
the matrix Σ, where , and project     xΣ =  1

m ∑
m

i = 1
x(i) (i)T    

our data onto the subspace spanned by these k         
vectors. As an example, the top eigenvector is the         
unit-length vector u that maximizes the following       
equation: 

The next PCA vector maximizes the same equation        
given the extra constraint that it be orthogonal to the          
first, and so on for the top k . 

We also used boosting as one of our models         
because for such a challenging problem, it might be         
easier to make predictions using a combination of        
weak learners. Boosting works by combining many       
weak learners that do slightly better than random,        
giving more weight to those that do well on         
examples in the training set we are getting wrong         
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and resulting in an overall classifier that is able to do           
much better than any individual weak learner. Recall        
that we seek to minimize the following objective,        
where ɸ represents our set of weak learners: 

 
We ran our boosting model with 100 weak        

learners, so as to try to avoid overfitting our data,          
which is a concern with boosting, because given        
enough learners the algorithm is able to learn the         
training set perfectly, but then will likely fail to         
generalize to unseen test data. 

We ran boosting with both oversampling      
and undersampling techniques, as well as with the        
unmodified training set. In order to oversample, we        
replicated the training examples from star players       
and added these duplicates to the training set until         
we had a roughly even split between the two classes,          
whereas when we undersampled we threw away       
non-superstar examples until we had an even split. 
 

Results 
 

Model Training 
Error 

Test Error 

SVM - Linear 29.6% 29.9% 

SVM - 
Polynomial 

12.4% 32.3% 

SVM - Gaussian 27.4% 29.9% 

SVM w/ PCA - 
Polynomial  

21.7% 29.4% 

Boosting 8.2% 24.5% 

Boosting - 
oversampling 

10.9% 34.3% 

Boosting - 
undersampling 

18.6% 32.4% 

 
As can be seen in the table above, our linear and 
gaussian SVMs performed reasonably well, getting 
just under 30% error. For the the SVM with a 
polynomial kernel, it suffered significantly from 
overfitting, getting 12.4% training error and 32.3% 
test error. In order to fix this problem, we reduced 
the dimensionality of the feature vector using PCA, 
which significantly improved the model. Below, we 
show a confusion matrix of our Gaussian SVM 
model. 

 
As you can see, our model was fairly balanced 
between precision and recall. 

For our boosting model, it initially got better 
test error than any of our other models. However, we 
realized that this was a result of the model labeling 
almost all of the data points as the majority class, 
which is not actually useful. Its confusion matrix is 
shown below 
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In order to solve this issue, we tested both 
oversampling and undersampling, which had slightly 
worse test error, but better (more balanced) 
confusion matrices. The confusion matrix for 
undersampling is shown below. 

 
 

Discussion 
 

Our performance is obviously not great, and       
our biggest takeaway from this project is that        
predicting WAR is a challenging problem, and       
there’s probably a reason Major League front offices        
employ teams of data scientists to work on problems         
like this in search of a competitive edge. Our best          
models got to around 25-30% error, and we were not          
particularly surprised at this performance given the       
many things that could go wrong over the first few          
years of a pitcher’s career. For instance, a nagging         
injury during a pitcher’s rookie year might cause        
him to look very unimpressive but then he could turn          
into an All-Star after dealing with the issue, or a          
player could miss most of a year due to an injury or            
be moved to the bullpen by his manager, both of          
which would likely affect his WAR but be        
unpredictable with metrics like those we used for our         
features. One challenge we faced was the fact that         
the majority of players are not great, so our data had           
many more examples of average players than stars.        
We tried oversampling and undersampling for our       
boosting classifier, which made the misses more       
uniform (without it, we simply tended to way        

overpredict the larger class) but decreased overall       
accuracy, and weighted the examples for our SVM        
such that both classes carried equal weight, which        
improved our performance.  

 
Future Work 

Given several more months to work on the        
project, we would concentrate initially on feature       
selection. As mentioned in the discussion portion,       
it’s tough to predict performance over a period of         
several years because so many random things can        
happen, like injuries, so we suspect that features that         
can predict things like that to some degree would be          
helpful. We’d also like to run some experiments to         
figure out which of our current features are actually         
informative, and if there are any we can get rid of.           
Additionally, WAR calculations depend on how      
good your team’s defense is, where you are playing,         
and the quality of the opposing hitters you’ve faced,         
so we’d like to incorporate more features that        
attempt to capture more of those components, or        
perhaps experiment with other metrics of      
performance in addition to WAR. During the poster        
session, Professor Duchi also pointed out that       
features with some sort of temporal aspect might        
also be useful in making predictions, in order to         
identify trends in a player’s performance throughout       
his rookie year. For instance, if a player started out          
poorly but then came on strong the second half of          
the year, that might be more informative than seeing         
all of his stats aggregated for the entire year. Data          
like this is much less readily available, and would be          
quite time-consuming to scrape, but it would be        
interesting to explore nonetheless.  
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