

Austin Poore
SUID: hapoore

05865600

Joey Asperger
SUID: joey2017

05859436

Predicting Pitchers’ Early-Career Value From Rookie Year Performance

Abstract:

We seek to develop accurate models for predicting the early-career value of pitchers in Major League Baseball
(MLB) based on statistics and data from their first season. More specifically, we use Wins Above Replacement
(WAR) as a measure of player value, and our goal is to be able to accurately predict whether or not a pitcher will
be worth at least five wins (cumulative WAR > 5) in years 2-4 of his career, based on features from his first year.
We apply a variety of feature selection and evaluation techniques on a variety of different classification models in
order to determine the best way to make these predictions. This problem proved to be surprisingly challenging
using feature vectors consisting mostly of traditional pitching statistics, which provides motivation for future
work in deriving more informative metrics that generalize better to future success.

Introduction
Major league baseball players typically

become free agents for the first time after their first
few years in the MLB, so our goal is to make
predictions about a pitcher’s cumulative Wins
Above Replacement (WAR) during the period where
he is still under the control of his first team, based on
data and statistics from his rookie year. More
specifically, we’d like to make predictions about a
pitcher’s value over the second, third, and fourth
years of his career. WAR is a statistic intended to be
an all-inclusive measure of a baseball player’s value;
intuitively, it seeks to answer the question “How
many more games does a player’s team win by
having that player rather than a readily-available
minor league replacement?” A player with a WAR
of 2.0, for instance, is thought to be worth two more
wins to his team over the course of a season than a
readily-available replacement player. Thus, it
provides a decent estimate of a player’s true value
(much more so than some other traditional metrics).
The formula to compute WAR is complex, and not
particularly valuable to look at in full for our
purposes, but it is important to note that it depends
on a pitcher’s statistics, as well as the quality of

opponents he’s faced, the quality of his team’s
defense, and where he played, mostly in order to be
able to make comparisons to the hypothetical
league-average pitcher.

Initially, we tried to train regression models
to make predictions about players’ WAR during this
early-career period. However, we realized that our
data set was extremely right-skewed; most players
ended up with very similar WAR values, with only a
handful of standouts far exceeding the rest by a wide
margin. We tried several different regression
models, but all had trouble dealing with these few
outliers, and we decided that perhaps being able to
predict a one or two-win difference over a three-year
period was less useful than being able to identify
future superstars. Thus, we switched our focus to
distinguishing between two classes of players: the
first consists of average to decent players, who
might be solid Major League contributors but are not
superstars, whereas the second consists of the future
All Stars, Cy Young winners, and MVPs. We
defined any player worth at least five wins over the
three-year period as a member of our second class,
which was right above the third quartile of our data
set. The inputs to our classifiers were feature vectors

2

made up mostly of aggregated statistics from
players’ rookie seasons. The classifiers would then
output a label, either zero or one, where a one
represented a predicted future star.

Review of related literature

After doing some digging, we struggled to
find much existing research that attempted to make
the predictions we hoped to be able to make. In
some ways, this is not entirely surprising; it is almost
certain that all (or nearly all) MLB teams are
employing analysts internally to apply statistical
methods to evaluate players. As these discoveries
represent a competitive edge, however, results are
unlikely to be shared. Baseball fans are notorious
statheads, though, so there are many blog posts and
senior theses out there about people attempting to
predict player performance in some sense, like [1],
[2], and [3].

However, our premise is a bit different in a
couple of important ways. First of all, predicting
performance for pitchers is more difficult than for
position players. As noted in [1], there’s an old
saying that “There’s no such thing as a pitching
prospect,” because a pitcher can blow out his arm on
any single pitch, and there are a lot more injuries
common to pitchers that can completely derail a
career than for position players. Second, much of the
existing analysis we turned up sought to predict a
player’s MLB value or performance (or even
whether they were likely to make the major leagues)
based on minor league statistics, whereas we hope to
use early MLB statistics to predict future value.
These are inherently different problems, though
some techniques might be useful to both.

One problem we faced during our project
was the fact that we had many more examples of
regular players as opposed to future stars, which
meant that initially, our classifiers simply learned to
predict mostly the larger class. In order to combat
this for our boosting algorithm, we employed some
of the undersampling and oversampling techniques
described in [4], which tended to hurt our accuracy

but improve our recall. We also weighted training
examples differently when training our SVMs,
attaching more weight to examples from the smaller
class.

Dataset and Features
Our features came primarily from Sean

Lahman's database, a free online database that
compiles MLB stats dating back to 1871. This
database contained pitching statistics for each year,
including stats like wins, losses, ERA, and other
traditional metrics. For our labels, we used a
separate source, Baseball Reference, to obtain each
player's yearly WAR. We then labeled rookies as
high-value if their total war over the next 3 years
was greater than 5, and low-value if it was less.
Originally, we had hoped to also use data from the
PITCHF/x dataset, which contains very advanced
information on every pitch throw in in an MLB
game, but since this system is relatively new, we
would only have 5 years of training data to work
with, which we did not think would be enough to
adequately train our classifiers. Ultimately, we
decided to use data going back to 1985, which would
give us a large training set, but not include data that
is so old it wouldn’t be relevant to modern pitchers.
Our overall data set consisted of 1,017 pitchers total
(all of the rookies from 1985-2013 who played in
each of the next three years), 813 of which we used
as training examples (193 high-value) and 204 of
which we used as test examples (53 high-value). See
the attached box plot of our data set:

3

For our features, we selected selected 20
important stats from each pitcher's rookie season,
shown in the table below. Our goal in selecting
features was to make sure our feature set was
informative enough to make predictions but not too
large that it suffered from overfitting. For each
feature, we also normalized the data points to have a
mean of zero and a standard deviation of one. We
also transformed the feature vector in some of our
models, using Gaussian and polynomial kernels for
our SVM. In addition, we also used principal
components analysis in our polynomial kernel model
to reduce the dimensionality of our feature vector
from 20 to 12 in order to avoid overfitting.

Wins Losses ERA Win %

Inning
s

Strikeouts SO/IP Games

Hits Hits/innin
g

Home
runs

HR/IP

Walks Walks/IP Opp BA R

ER WAR Age Team
runs
saved

Methods

We used the scikit-learn machine learning
library for Python, cited in [5], to build and test all
of our models.

We used support vector machines as one of
our models because the hinge loss function seemed
like a reasonable choice in our objective function.
Recall that the hinge loss penalizes based on the size
of the margin:

Our intuition was that a larger margin means that

we’re more confident in our predicted classification,
so optimizing for large margins seems like a
reasonable choice. SVMs also have the benefit of
being able to use different kernels, like the Gaussian
kernel, or a polynomial kernel, to generate nonlinear
decision boundaries, which would help us capture
patterns which we would not be able to with a
simple linear decision boundary. In our model, we
also increased the weight for our data points of
high-impact players in order to balance to two
classes. In order to find the optimal hyperparameters
for the model, we used a library called Optunity and
tested the hyperparameters using 5-fold
cross-validation and scoring models based on the
area under the curve plotting true positives against
false positives.

We also used principal component analysis
with some of our SVM models, which reduces the
dimensionality of our training data by projecting the
feature vectors onto a lower dimensional subspace
that still captures most of the variance in the data.
Recall that in PCA, we find the top k eigenvectors of
the matrix Σ, where , and project xΣ = 1

m ∑
m

i = 1
x(i) (i)T

our data onto the subspace spanned by these k
vectors. As an example, the top eigenvector is the
unit-length vector u that maximizes the following
equation:

The next PCA vector maximizes the same equation
given the extra constraint that it be orthogonal to the
first, and so on for the top k .

We also used boosting as one of our models
because for such a challenging problem, it might be
easier to make predictions using a combination of
weak learners. Boosting works by combining many
weak learners that do slightly better than random,
giving more weight to those that do well on
examples in the training set we are getting wrong

4

and resulting in an overall classifier that is able to do
much better than any individual weak learner. Recall
that we seek to minimize the following objective,
where ɸ represents our set of weak learners:

We ran our boosting model with 100 weak

learners, so as to try to avoid overfitting our data,
which is a concern with boosting, because given
enough learners the algorithm is able to learn the
training set perfectly, but then will likely fail to
generalize to unseen test data.

We ran boosting with both oversampling
and undersampling techniques, as well as with the
unmodified training set. In order to oversample, we
replicated the training examples from star players
and added these duplicates to the training set until
we had a roughly even split between the two classes,
whereas when we undersampled we threw away
non-superstar examples until we had an even split.

Results

Model Training
Error

Test Error

SVM - Linear 29.6% 29.9%

SVM -
Polynomial

12.4% 32.3%

SVM - Gaussian 27.4% 29.9%

SVM w/ PCA -
Polynomial

21.7% 29.4%

Boosting 8.2% 24.5%

Boosting -
oversampling

10.9% 34.3%

Boosting -
undersampling

18.6% 32.4%

As can be seen in the table above, our linear and
gaussian SVMs performed reasonably well, getting
just under 30% error. For the the SVM with a
polynomial kernel, it suffered significantly from
overfitting, getting 12.4% training error and 32.3%
test error. In order to fix this problem, we reduced
the dimensionality of the feature vector using PCA,
which significantly improved the model. Below, we
show a confusion matrix of our Gaussian SVM
model.

As you can see, our model was fairly balanced
between precision and recall.

For our boosting model, it initially got better
test error than any of our other models. However, we
realized that this was a result of the model labeling
almost all of the data points as the majority class,
which is not actually useful. Its confusion matrix is
shown below

5

In order to solve this issue, we tested both
oversampling and undersampling, which had slightly
worse test error, but better (more balanced)
confusion matrices. The confusion matrix for
undersampling is shown below.

Discussion

Our performance is obviously not great, and
our biggest takeaway from this project is that
predicting WAR is a challenging problem, and
there’s probably a reason Major League front offices
employ teams of data scientists to work on problems
like this in search of a competitive edge. Our best
models got to around 25-30% error, and we were not
particularly surprised at this performance given the
many things that could go wrong over the first few
years of a pitcher’s career. For instance, a nagging
injury during a pitcher’s rookie year might cause
him to look very unimpressive but then he could turn
into an All-Star after dealing with the issue, or a
player could miss most of a year due to an injury or
be moved to the bullpen by his manager, both of
which would likely affect his WAR but be
unpredictable with metrics like those we used for our
features. One challenge we faced was the fact that
the majority of players are not great, so our data had
many more examples of average players than stars.
We tried oversampling and undersampling for our
boosting classifier, which made the misses more
uniform (without it, we simply tended to way

overpredict the larger class) but decreased overall
accuracy, and weighted the examples for our SVM
such that both classes carried equal weight, which
improved our performance.

Future Work

Given several more months to work on the
project, we would concentrate initially on feature
selection. As mentioned in the discussion portion,
it’s tough to predict performance over a period of
several years because so many random things can
happen, like injuries, so we suspect that features that
can predict things like that to some degree would be
helpful. We’d also like to run some experiments to
figure out which of our current features are actually
informative, and if there are any we can get rid of.
Additionally, WAR calculations depend on how
good your team’s defense is, where you are playing,
and the quality of the opposing hitters you’ve faced,
so we’d like to incorporate more features that
attempt to capture more of those components, or
perhaps experiment with other metrics of
performance in addition to WAR. During the poster
session, Professor Duchi also pointed out that
features with some sort of temporal aspect might
also be useful in making predictions, in order to
identify trends in a player’s performance throughout
his rookie year. For instance, if a player started out
poorly but then came on strong the second half of
the year, that might be more informative than seeing
all of his stats aggregated for the entire year. Data
like this is much less readily available, and would be
quite time-consuming to scrape, but it would be
interesting to explore nonetheless.

6

References

[1] Mitchell, Chris. “Forecasting Major League Hitting with Minor League Stats”. The Hardball Times. Web.
Dec. 30 2014.
<http://www.hardballtimes.com/katoh-forecasting-a-hitters-major-league-performance-with-minor-league-stats/>

[2] Pinheiro, Ryan Xavier. “Efficient Free Agent Spending in Major League Baseball”. (Master’s thesis) Web.
<https://etd.ohiolink.edu/!etd.send_file?accession=akron1396821766&disposition=inline>

[3] Tymkovich, Jay Lyon, "A Study of Minor League Baseball Prospects and Their Expected Future Value"
(2012). CMC Senior Theses. Paper 442. <http://scholarship.claremont.edu/cmc_theses/442>

[4] C. Drummond, R.C. Holte, “C4.5 Class Imbalance and Cost Sensitivity: Why Under Sampling Beats
Over-Sampling”. Proc. Int’l Conf. Machine Learning Workshop Learning from Imbalanced Data Sets II . 2003.

[5] Scikit-learn: Machine Learning in Python, Pedregosa et al. JMLR 12, pp. 2825-2830, 2011.

[6] Sports Reference LLC. Baseball-Reference.com-Major League Statistics and Information.
http://www.baseball-reference.com/. 11 Dec. 2016.

[7] Lahman, Sean. "Download Lahman’s Baseball Database." Sean Lahman | Database Journalist . Web.
http://www.seanlahman.com/baseball-archive/statistics/. 11 Dec. 2016.

