
   

Prediction of phenotype (ASD vs. Control) utilizing  gut microbiome 
composition would help characterize biological associations, direct further 
work in the field, and may ultimately lead to an early diagnostic tool or 
therapeutic. We used supervised learning approaches to make predictions, 
unsupervised clustering to reduce the high-dimensionality variance,  and 
next aim to use factor analysis to identify latent variables in microbial 
composition across samples so as to characterize and classify phenotype.
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Introduction

The dataset was provided by Wall Lab at Stanford University. 16S 
sequencing on each sample tells us which taxa are present and their 
quantitative abundance. Every case sample has one (or two in fewer cases) 
age-matched, environmentally-matched sibling control sample(s). After 
QC, we have 109 samples and 1007 bacterial taxa.

   

Data

Naive Bayes as a First Approach

Naive Bayes with Laplace Smoothing is a suitable first approach, 
providing insight into the data. Figure 1 was generated using k-fold CV, 
individually holding out each sibling pair. The plot has visible clustering, 
is highly biased to predict autistic classification, and most of the data is 
inseparable. However, at the max and min values (where the most 
confident predictions are found), the accuracy is seen to improve. Each 
sample is abundant with bacterial taxa; however, adding a firm  Mutual 
Information cut-off fails to reduce testing error. Naive Bayes suffers from 
too much bias to be a useful classifier on this dataset, indicating linear 
boundaries cannot separate this data.  

   

Figure 1: K-Fold CV for Each Sibling Pair Using NB with Laplace Smoothing

We elected to fit a boosted ensemble of decision trees because of this 
model’s robustness to outliers and monotone transformations of the inputs, 
and because of its ability to stratify the feature space with nonlinear 
boundaries. We allowed each weak learner (each tree) to grow up to five 
splits in order to capture interaction effects between bacterial taxa, and we 
used a shrinkage factor of 0.001 and subsampling of a 0.5 fraction of the 
training data at each iteration of boosting in order to mitigate overfitting 
due to high variance.

We used 10-fold cross-validation over the boosted model on the full dataset 
and determined that the optimal test error was achieved when the model 
included 21 trees. A plot of the training and 10-fold cross-validation error 
indicated that boosting did not seem to generally reduce cross-validation 
error as additional trees were added to the ensemble; in fact, the model 
seems to start overfitting soon after the start of the boosting algorithm (See 
figure 3). 

Boosting and Bias/Variance Diagnostics

K-Means for Dimensionality Reduction

The overfitting suggests that additional trees are generally picking up 
noise. This may be due to the high dimensionality and general sparsity of 
the data.

We use kmeans clustering on the taxa and collapsing the taxa down to 
cluster centroids to reduce dimensionality and attempt to capture latent 
relationships between taxa. We determined that using between 4 and 7 
clusters resulted in some improvement to overall model performance. 
Thus, we preprocessed the data by running k-means with k = 7 over the 
taxa and then collapsing the sample vectors from ap- proximately 1000 
taxa measurements down to 7 taxa centroids computed using the cluster 
labels.

The optimal test error was achieved with 310 trees. Although the boosting 
algorithm is now able to fit more trees before the onset of over- fitting, the 
overall improvement to the model is marginal as the minimum Bernoulli 
deviance achieved is not much lower than it was previ ously (See Figure 
5).

In order to assess the models performance with respect to bias and 
variance, we trained the model over a range of proportions of the data, 
testing each time on the left-over/hold-out data. We then ploted how the 
training and test errors varied with the size of the training set. These 
diagnostics were performed for both the gbm model on the full dataset and 
the gbm model on the reduced dataset.

On the full dataset, the test error and training error flatten out at high values 
and with a small gap between each other as training set size increases, 
suggesting that model bias is an issue here (See Figure 4). On the reduced 
dataset, we now observe that both the test error and training error appear to 
be decreasing with increasing training set size at the right cut-off (See 
figure 6). It is possible that k-means over the feature space  was able to 
capture latent relationships between taxa, allowing the model to capture 
more information in spite of the small sample size. However, both training 
and test error are still quite high, indicating that we still have a bias 
problem. 

Boosting Continued

Using 20% holdout CV, we have generated the following result.

Results

Although we did not accurately predict phenotype from gut microbiome, 
this does not mean there is not a connection. Firstly, our problem was 
prone to very high variance, with small sample size in the face of a large 
feature space. While K-means reduction was meant to mitigate this 
variance, more informed dimensionality reduction may be more fruitful. 
Secondly, most ML algorithms assume independence of samples, while 
our dataset had carefully controlled criteria of sibling pairs. We mandated 
that our train and test sets never split sibling pairs, however, our 
algorithms did not adequately exploit this structure. Lastly, there is a 
significant portion of autism that can be explained by genetics. It is 
possible that our dataset is not complete enough to reveal interesting 
correlations, but that combining it with the genetic data modality will 
result in greater predictive power. 

   

Discussion

Given that dimensionality reduction will be needed to improve 
performance, we would like to look more deeply into this area. A model 
capable of capturing more nuanced interactions between taxa 
distributions, like autoencoding, may produce more interesting 
dimensionality reduction. Additionally, using domain knowledge to 
aggregate those taxa that are known to occupy the same niche or produce 
the same metabolites may prove very useful. It would also be interesting 
to work with matched pair machine learning, to leverage our dataset to its 
fullest potential. A high-dimensional factor analysis may prove useful in 
searching for latent factors which explain the variation within the autistic 
and non-autistic groups. The factor loadings can then be examined in 
order to discover relationships between informative taxa. 
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Figure 2: Naive Bayes Error Versus Mutual Information Cutoff 

Figure 3: GBM, Full Dataset

Figure 4: Diagnostic, Full Dataset

Figure 5: GBM, Derived Dataset

Figure 6: Diagnostic, Derived Dataset

Correlation Heatmap
Figure 7: Latent Groups Among the Taxa


