Art Forgery Detection

Art Forgery

- Famous painters fetch \$\$\$ in art world (museums, private collectors).
- This incentivizes forgeries.
 - Ex- Han van Meegeren sold \$30 million worth forgeries in 1967.

Forgery Detection

- Analog techniques- Carbon dating (age), X-ray diffraction (pigment analysis) etc.
- 2. Digital techniques
 - a. Wavelet decomposition (brush stroke analysis)
 - b. Deep learning (painter specific image features)

Featurizing Art

Convolutional Neural Networks

- Convolutional neural networks can be used for 'guided' featurization of images.
- Given (image, label) pairs, it can decompose the image into features such that different labels have different features.
- This can be used to find labels of new images (supervised learning).

Painting Classification

- Given a painting and a label (genre, painter, era), identify features that distinguish paintings with different labels.
- Previously applied to genre prediction and painter prediction (~100 paintings).

Dataset

Original: 80,000 paintings from Kaggle (originally from wikiart.org) with paintings, genres and era labels.

Subset: We select 100 random painters from 1584 total painters in the dataset. This correspond to 3529 paintings.

Train-test split: We use a stratified split across the 3529 paintings to obtain a train set of 3171 paintings and a test set of 358 paintings.

DART: Deep learning for ART

Maxime Dumonal, Yuze He, Prasad Kawthekar {mdumonal, yuzehe, pkawthek}@stanford.edu

	_						
Δ		\mathbf{n}	ri	ŧł	יר	m	•
	ıЧ	U	11	U	ш		

- Extract features from VGGNet with default weights.
- Train fully connected classifier with extracted features to minimize categorical cross-entropy, while propogating gradient descent to last layer of VGGNet (fine-tuning).

2. CNN + SVM:

Algorithm:

- Extract features from fine-tuned VGGNet (obtained after running previous step).
- Train multi-class SVM on extracted features.

3. Siamese Net:

Intuition:

- Shared architecture to extract features
- Train model to minimize contrastive loss and 'directly' predict if two features are of same label or not.

CNN +
CNN +
Siames Net

Painting featurization

Computationally expensive Although it is possible to extract painter specific features, these tasks are computationally expensive in terms of processing time, disk usage and memory footprint.

1.	Impi
2.	Fea [:]
3.	Style

1	DCa
1.	в. за (201
2.	Kare
3.	Xing
4.	Had

Results									
	Test ROC AUC	Test F1	Test Accuracy	Test Precision	Test Recall				
NN [*]	0.547	0.671	0.547	0.526	0.925				
SVM	0.867	0.882	0.867	0.793	0.993				
9	0.800	0.833	0.800	0.714	1				

tSNE on 10 random painters

Conclusions

It appears that CNNs can extract painter-specific features using pixel data of digital copies of paintings.

Future Work

prove model performance- hyperparameter search, larger datasets. aturize visualization- what makes a painter unique? yle generators- what would Rembrandt's portrait of you look like?

References

aleh, K. Abe, R. Arora, A. Elgammal. "Toward Automated Discovery of Artistic Influence". Multimedia Tools and Applications Journal, Springer

en Simonyan, Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition" g E P, Jordan M I, Russell S, et al. "Distance metric learning with application to clustering with side-information",,NIPS2002: 505-512. dsell, Raia, Sumit Chopra, and Yann LeCun. "Dimensionality reduction by learning an invariant mapping." 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). Vol. 2. IEEE, 2006.