
...0 1 offset

Cache

Main memory

disks

Fastest
Most expensive

Slowest
Cost efficient

Virtual address space 
(application’s view)

Physical view
(actual devices)

application

Issues IO request

Store this IO in which device will result in lowest 
overall access latency?

In case capacity is full, kick out 
which blocks to help with future 
access latency? 

Use ML clustering algorithm to predict the optimal physical storage location and eviction policy! 
Each IO is an example. Entire trace file captured over a period of time is our data set.

Clustering pass 1:
Entire data set in one run
Feature 1 is offset (x-axis)
Feature 2 is time (y-axis)

Clustering pass 2:
One run per time slice to find spatial locality

Feature 1: offset
Feature 2: extent

Normalize biased towards time domain.
Result in horizontal clusters. 

Star indicates each time slice’s centroid

3 spatial clusters within this time slice

Simulate 2 tier system: 1 mega byte upper tier; unlimited lower tier
Data: 10 minute trace from Microsoft’s storage file server

(disk_1_MSNFS.2008-03-10.03-03.trace.csv)

Traditional LRU
Most recent IO goes into upper tier
If need to free capacity, evict least recently accessed data.

ML approach
If an IO is in a working set, fill cache with entire working set.
Clear first if needed.
If no working set associated with IO, same behavior as LRU.

Hit rate: 67% Hit rate: 83% 

One time 
slice cluster

Extent as inferred feature

All accesses in a spatial cluster are 
considered one working set.
Represent by directed graph. 

The graph is the output of our ML.

10 minutestime
1st minute

Overlap training (building working sets for future time slice) 
and testing (apply working sets from previous training)

…

2nd minute

3rd minute 4th minute

10th minute

Additional parameters to tune for improving ML result: tier sizes, ML eviction policy

2nd minute 3rd minute

4th minute
10th minute

sizetimeoffset access type

Intelligent Storage System With Machine Learning


