
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

The goal is to train a machine to generate music in a
freestyle manner. We use the Recursive Neural Net
(RNN) with its power to model sequential data such as
generating text, predicting trends in time series, and
classifying sentiment of texts. In our problem, we feed
our RNN segments of music data to train it to produce
music on its own. In doing so, we hope the RNN will
learn dependencies between notes and the conditional
probability of notes in sequence so that we can generate
new and original sequences much like a HMM or
Markov/n-gram models without restrictions.

PREDICTING

DATA

A Many-to-One RNN is define as:

Parameters: 𝑊"",𝑊$",𝑊"%, 𝑇
Input Layer: 𝑋(, 𝑖	𝑖𝑛	1: 𝑇
Hidden Layer: ℎ(∈ [−1, 1], 𝑖	𝑖𝑛	1: 𝑇
Update: ℎ(= tanh 𝑊""ℎ89:	 + 𝑊$"𝑥(, ℎ= = 0
Output: 𝑦	 = 𝑊"%ℎ@

The LSTM cell adds more parameters and has a more
complex update step (omitted here), but the mechanisms are
still the same. Training is done by back-propagating from the
output sampled in batches to increase the speed.

We seek to minimize the multiclass log-loss defined as

MODELS

RESULTS	

DISCUSSION
Despite the free range of music, music generated had
musical qualities.

Melody was very distinct and lyrical (small steps and
alternating between ascending and descending in pitch).
Chord progression/cadences was also present as the I-IV-
V-I progression was widely used in all generated samples.
Finally, the algorithm seemed to generate plausible music
after 100 beats even though we only fed a seed of 32
beats.

Music from the 3-gram was also rather lyrical but music
composed lacked a feel that something more intelligent
wrote them since the machine is unable to store data on
more than 3 beats previously whereas RNN repeated
patterns over 32 beats.

[1] N Boulanger-Lewandowski, Y. Bengio, P. Vincent, Modeling
Temporal Dependencies in High-Dimensional Sequences: Applications
to Polyphonic Music Generation and Transcription, in
Proceedings of the 29th International Conference on Machine
Learning (ICML), 2012
[2] K Goel, R Vohra, and J.K. Sahoo, Learning Temporal Dependencies
in Data Using a DBN-BLSTM
[3] http://deeplearning.net/tutorial/rnnrbm.html
[4] http://deeplearning.net/tutorial/rbm.html
[5]
http://christianherta.de/lehre/dataScience/machineLearning/neuralNetw
orks/LSTM.[6] Eck, D. and Schmidhuber, J. Finding temporal structure
in music:
Blues improvisation with LSTM recurrent networks. In NNSP,
pp. 747756, 2002.

We process the entire Nottingham files of songs which
contains 762 songs, each over a minute long. We do a 70-
30 split between training and test data for sake of
comparison with the other methods we use: random and
n-gram (In fact, test data is not necessary at all for our
generative model because we’re not looking to reproduce
music exactly).

We extract the melody from each song and divide each
measure into 8 segments where each segment 𝒗𝒊	is equal
to the value of the note played at time i. For each song,
we extract the sequence 𝒗𝒊, 𝒗𝒊C𝟏 …,𝒗𝒊C𝟑𝟏	for all possible
timestamp i to construct the features and train the RNN to
classify 𝒗𝒊C𝟑𝟐. This gives us a total of 154992 training
sequences.

Jason	Wang	(zwang01@stanford.edu)
Stanford	University	- Statistics

Music	Composition	with	RNN

RNN	with	LSTMN-GRAM

REFERENCESFEATURES

The only explicit feature is the pitch quality of the note.
This is the 88 encoding of piano keys to numbers where
21 is the lowest A on the piano and 109 is highest C.
Implicitly, we take advantage of sequential information so
this includes information such as

- Duration of the notes
[C, C, C, C, G] indicates that C is held for 4 beats

while G is held for 1 beat.

- Transition probability of notes
- [C, E, G] is a more likely musical transition than

[C, F#, D].

From the training set, we examine all sequences of notes
for n beats. This gives us a massive dictionary of all the
short sequences of musical expressions and the
probability each phrase is used in music. Then we can
compute

𝑝 𝑥8 𝑥89:,	 … , 𝑥89I)

=
#	𝑡𝑖𝑚𝑒𝑠	 𝑥89I … , 𝑥8 	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 𝑐

#	𝑡𝑖𝑚𝑒𝑠	 𝑥89I … , 𝑥89: 	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 𝑘𝑐	

where c is the smoothing constant and k is the total
possible values the notes can take.

We generate music by sampling the first n beats of a
random song from the test data and iteratively sample the
new note based from the learned probabilities above.

Accuracy is defined as the percentage of the next 32 beats where the generated music and the actual music sequence match.
Mathematically, it is defined as the term below.

𝐴𝑐𝑐 𝑦8,	 … , 𝑦89IC:	 𝑥8,	 … , 𝑥89IC:) =
1
𝑚X

∑ 𝐼 𝑦[= 𝑥[8
[\89IC:

𝑛

]

(\:
However, since we are mainly concerned about the ability for the RNN to generate novel music, we instead minimize the
training multiclass log loss and are only concerned with this quantity. Accuracy is simply just a benchmark to measure some
related metric. Qualitative analysis of generated samples is still required.

Model Log-loss Training	Accuracy Test	Accuracy
Random -- 0.024 0.024
3-gram*	(*best with	test	set) -- 0.369 0.315
RNN-LSTM (50	epochs) 0.7460 0.766 0.588

FUTURE	WORK

Collection of more data especially complicated melodies
would be nice. We can also learn rhythm explicitly (How
do we encode?). Finally, can we find a way to generate
harmony? Is there a loss function that we can train for
learning musical qualities of two voices instead of one
such as harmony and counterpoint.

