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The goal is to train a machine to generate music in a 
freestyle manner. We use the Recursive Neural Net 
(RNN) with its power to model sequential data such as 
generating text, predicting trends in time series, and 
classifying sentiment of texts. In our problem, we feed 
our RNN segments of music data to train it to produce 
music on its own. In doing so, we hope the RNN will 
learn dependencies between notes and the conditional 
probability of notes in sequence so that we can generate 
new and original sequences much like a HMM or 
Markov/n-gram models without restrictions. 
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A Many-to-One RNN is define as: 

Parameters: 𝑊"",𝑊$",𝑊"%, 𝑇
Input Layer: 𝑋(	, 𝑖	𝑖𝑛	1: 𝑇
Hidden Layer: ℎ(	 ∈ [−1, 1], 𝑖	𝑖𝑛	1: 𝑇
Update: ℎ(	 = tanh 𝑊""ℎ89:	 + 𝑊$"𝑥(	 , ℎ= = 0
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The LSTM cell adds more parameters and has a more 
complex update step (omitted here), but the mechanisms are 
still the same. Training is done by back-propagating from the 
output sampled in batches to increase the speed. 

We seek to minimize the multiclass log-loss defined as

MODELS

RESULTS	

DISCUSSION
Despite the free range of music, music generated had 
musical qualities.

Melody was very distinct and lyrical (small steps and 
alternating between ascending and descending in pitch). 
Chord progression/cadences was also present as the I-IV-
V-I progression was widely used in all generated samples. 
Finally, the algorithm seemed to generate plausible music 
after 100 beats even though we only fed a seed of 32 
beats. 

Music from the 3-gram was also rather lyrical but music 
composed lacked a feel that something more intelligent 
wrote them since the machine is unable to store data on 
more than 3 beats previously whereas RNN repeated 
patterns over 32 beats. 
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We process the entire Nottingham files of songs which 
contains 762 songs, each over a minute long. We do a 70-
30 split between training and test data for sake of 
comparison with the other methods we use: random and 
n-gram (In fact, test data is not necessary at all for our 
generative model because we’re not looking to reproduce 
music exactly). 

We extract the melody from each song and divide each 
measure into 8 segments where each segment 𝒗𝒊	is equal 
to the value of the note played at time i. For each song, 
we extract the sequence 𝒗𝒊, 𝒗𝒊C𝟏 …,𝒗𝒊C𝟑𝟏	for all possible 
timestamp i to construct the features and train the RNN to 
classify 𝒗𝒊C𝟑𝟐. This gives us a total of 154992 training
sequences. 
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The only explicit feature is the pitch quality of the note. 
This is the 88 encoding of piano keys to numbers where 
21 is the lowest A on the piano and 109 is highest C. 
Implicitly, we take advantage of sequential information so 
this includes information such as 

- Duration of the notes
[C, C, C, C, G] indicates that C is held for 4 beats 

while G is held for 1 beat. 

- Transition probability of notes
- [C, E, G] is a more likely musical transition than 

[C, F#, D].       

From the training set, we examine all sequences of notes 
for n beats. This gives us a massive dictionary of all the 
short sequences of musical expressions and the 
probability each phrase is used in music. Then we can 
compute 
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where c is the smoothing constant and k is the total 
possible values the notes can take. 

We generate music by sampling the first n beats of a 
random song from the test data and iteratively sample the 
new note based from the learned probabilities above. 

Accuracy is defined as the percentage of the next 32 beats where the generated music and the actual music sequence match. 
Mathematically, it is defined as the term below. 
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However, since we are mainly concerned about the ability for the RNN to generate novel music, we instead minimize the 
training multiclass log loss and are only concerned with this quantity. Accuracy is simply just a benchmark to measure some 
related metric. Qualitative analysis of generated samples is still required. 

Model Log-loss Training	Accuracy Test	Accuracy
Random -- 0.024 0.024
3-gram*	(*best with	test	set) -- 0.369 0.315
RNN-LSTM (50	epochs) 0.7460 0.766 0.588

FUTURE	WORK

Collection of more data especially complicated melodies 
would be nice. We can also learn rhythm explicitly (How 
do we encode?). Finally, can we find a way to generate 
harmony? Is there a loss function that we can train for 
learning musical qualities of two voices instead of one 
such as harmony and counterpoint. 


