Automatically Quantifying Radiographic Knee OA Severity

Akash Mahajan, Nathan Dalal and Suhas Suresha Stanford University

Objectives

Develop a machine learning model to automatically quantify knee osteoarthritis (OA) severity, labeled using the Kellgren and Lawrence (KL) grading system

Motivation

- Knee OA is most common cause of limited mobility in adults
- Radiographic (X-ray) and symptomatic
 OA status do not correlate
- Identifying predictors of pain from radiographic images could be used as targets for drug development

Osteoarthristis Staging

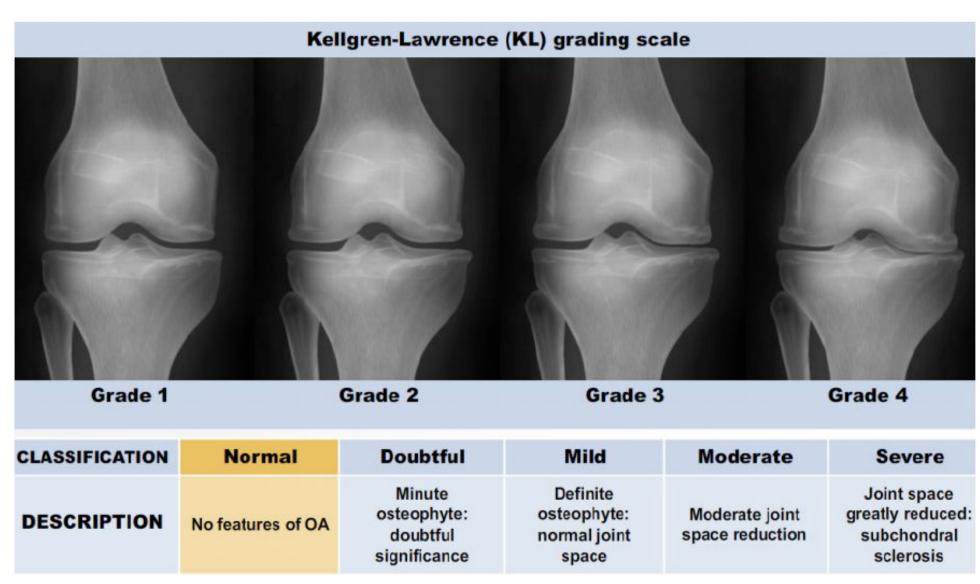


Figure: Kellgren and Lawrence (KL) grading system

Dataset

Knee X-ray images were obtained from the **Os- teoarthritis Initiative (OAI) dataset** courtesy of the Mobilize lab at Stanford University

Stage	Number of Images	% of total
0	3054	40.45
1	1384	18.34
2	1978	26.20
3	960	12.71
4	173	2.29

Methodology 1

Feature Extraction

- Pre-process images to have a fixed size
 (1280x768) such that change in resolution and aspect ratio is minimal
- Extract features from final pooling layer
 (pool-5) of the raw images using a ImageNet
 pre-trained VGG-16 network
- Generate activation map by convolving a
 224x224 window (fixed input size for VGG-16 net) over the pre-processed image
- Apply max pooling to down-sample activation feature size

Methodology 2

Faster Region-CNN: Train a faster R-CNN to first extract the knee joint region from the X-ray images and then classify them based on KL score. It has the following steps:

- Labeling: Label a bounding box for each image containing the knee-joint region
- Training: It has a 4-step training procedure:
- Step 1: Train a region proposal network with weights initialized from pre-trained ZF network
- Step 2: Train the object classification network using proposals from step 1
- Step 3: Re-train region proposal network with initialized weights learnt in step 2
- Step 4: Re-train object classification network using proposals from step 3

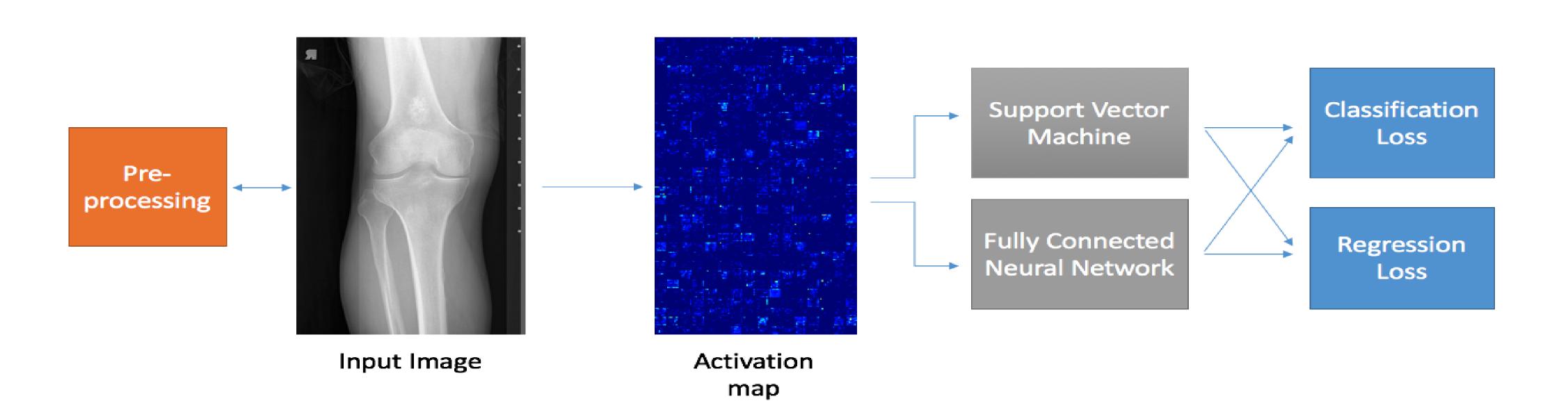


Figure: Training pipeline for Methodology 1

Methodology 1 Results - Methodology 1

Model Selection

- Support Vector Machine: Train a linear kernel support vector machine on extracted features
- Fully Connected Neural Network: Train a 2-layer fully connected neural network on extracted features

Loss Function

- Classification Loss: Use a categorical cross-entropy loss function
- Regression Loss: Use a mean-squared error loss function

Linear SVM

- Training = 4200 images
- Validation = 1400 images
- Test = 700 images

Regression Loss							
	0	1	2	3	4	Precision	Recall
0	160	34	44	33	4	0.58	0.58
1	66	14	30	32	2	0.17	0.12
2	38	29	58	38	3	0.34	0.35
3	13	5	34	44	3	0.28	0.34
4	0	0	3	10	3	0.20	0.19
					Mean	0.39	0.40

Results - Methodology 1

Linear SVM

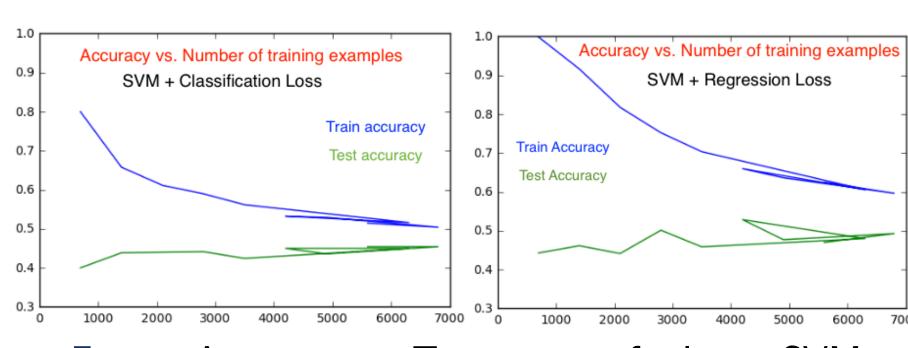


Figure: Accuracy vs. Training size for linear SVM

Fully Connected Neural Net

Classification Loss							
	0	1	2	3	4	Precision	Recall
0	200	26	42	7	0	0.54	0.73
1	84	17	34	9	0	0.24	0.12
2	66	20	70	10	0	0.38	0.42
3	20	7	36	36	0	0.49	0.36
4	2	0	2	12	0	0.00	0.00
	Mean					0.42	0.46

	Regression Loss							
	0	1	2	3	4	Precision	Recall	
0	100	149	23	2	0	0.72	0.36	
1	28	85	29	2	0	0.24	0.59	
2	10	90	58	8	0	0.33	0.35	
3	1	22	60	15	1	0.43	0.15	
4	0	1	6	8	1	0.50	0.06	
					0.48	0.37		

Results - Methodology 2

- Training + Validation = 700 images
- Validation = 200 images
- Test = 300 images

Predicting the knee-joint region has an accuracy of 98 % when the Intersection over Union (IoU) threshold is fixed at 0.7.

Figure: Examples of correctly classified X-ray images (with knee joint region extracted) using faster R-CNN