
DATASET
We use data from Japan’s Hi-Net seismometer 
array, speci�cally all catalogued earthquake 
events from a year of data recorded at Station 
UCNH on Kagoshima island.  The dataset is 
highly inhomogenous in that smaller magni-
tude earthquakes occur much more frequently 
than larger ones and shallower earthquakes 
occur more frequently than deeper ones.
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MOTIVATION
In seismology it is important to determine the cer-
tain information about the source of an earthquake 
such as its origin depth and moment magnitude (a 
measure of the earthquake’s size.)  This usually re-
quires performing calculations on data collected 
from multiple stations.  We are interested in deter-
mining if, using features extracted from the time-se-
ries of ground velocity collected at a single seismom-
eter, we are able to classify earthquake events ac-
cording to depth or magnitude.  These include fea-
tures such as the ratios of di�erent windows of the 
frequency spectrum and time di�erence between 
maximums in the timeseries.

Fig.1. Map of earthquake data used in this study. 
Red indicates events deeper than 60 km and blue are shallower.

Size of dots are proportional to earthquake magnitude.
The green dot is the location of station UCNH.

FUTURE DIRECTIONS

MODEL AND RESULTS

Random Forest Confusion Matrix

Models and Performance

Bayesian Ridge 
Regression

Model Equations

where

and

Training 
R2

Test
R2

0.49 0.39

Random Forest 
Regressor

Finds the feature/ threshold 
that minimizes the total 

mean squared error for all 
the data

0.94 0.75

Features for Magnitude Regression
The features that we used to predict earthquake magnitude were based on the features extracted using tsfresh. We used 
Cross-Validation to determine the features that were informative for predicting magnitude. Magnitude is related to the ampli-
tude (height) of the wavefor, so features that turned out to be important were a number that quantify the amplitude of the 
waveform: maximum, minimum, quantile ratios, The two regression models we used did not use the same set of features, and 
the features used by the RFR were more related to amplitude. The fact that the RFR did much better than the linear BRR could 
indicate non-linear relation between predictors and magnitude. 
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Features for Depth Classification
The earthquakes in our study area are clustered at di�erent depths, so instead of regressing depth we divide them into a set of depth 
bins (Very Shallow [VS: 0-20 km], Shallow [S: 20-70 km], Intermediate [I: 70-300 km], and Deep [D: >300 km]). We use the features gener-
ated by tsfresh, as well as creating our own features relating to peaks in the frequency spectrum, an estimate of the number of  ‘corner 
frequencies’ in the log-amplitude vs. log-angular frequency plot, and the �rst three principal components. We use 5-fold cross validation 
to choose the most predictive features for the Random Forest Classi�er (RFC), and an F-test scoring function to select the top 200 fea-
tures directly for use with the SVM. We use balanced class weights with the SVM because there are many fewer VS, I, and D events than S. 
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FEATURES
We extract features from the raw timeseries data using tsfresh (Christ et al., 
2016), as well as compute several additional features ourselves from the data 
such as the ratio of subsequent windows in the power spectra, which represents 
a measure of the shape of the spectrum. Tsfresh extracts various types of statis-
tics related to the raw data and various transforms of the data (e.g. Discrete Fou-
rier Transform). Since there are many features (~700) and not all are relevant, we 
use various kinds of feature selection techniques (F-test score, cross-validation, 
and random forest classi�ers) to extract only the relevant features and use those 
for our problem. Examples of relevant features include basic statistics like kurto-
sis, number of peaks, minimum and maximum, the quantiles of the time deriva-
tive; autoregressive, autocorrelation, and di�erent frequency-domain coe�-
cients also were important.

DISCUSSION
We obtained better results for both magnitude and depth prediction using random 
forest models.  This makes sense because individual features themselves are not ex-
tremely indicative of either magnitude or depth.  But by combining the features, 
we get a better predictor.  Physically, we understand why some features predict cer-
tain labels - earthquake magnitude, for example, is partially related to timeseries 
amplitude, especially for earthquakes at a common depth.  Depth is related to vari-
ous measures of the power spectrum because high frequency data is attenuated at 
depth.  However, some of the features that are either related to amplitude or fre-
quency may actually be  correlated with each other, and we might have gotten a 
better model by removing some features that correlate with each other.

As stated in the Discussion,  we would like to analyze our features more to see which 
features are independent of each other.  Secondary features derived from physics, 
such as the windowed ratio of the power spectra proved to be an interesting , but 
we did not have enough time to completely separate the values for the labels (see 
Figure 2).  We could try a projection with SVM to try to separate out the values for 
each label or a deep neural network to learn the important features directly.
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Package we used:

Fig.2. Windowed ratio of power spec-
trum which serves as a proxy for 

corner frequency, shown here in depth 
clusters.  Dark pink, light pink and 

green
represent very shallow, shallow, and 

intermediate-
depth earthquakes repsectively.


