
Predicting the Likelihood of Response in a Messaging Application
Kevin Shin, Tushar Paul

{kevshin, aritpaul}@stanford.edu

Motivation
Group messaging services send users
notifications when they get messages.
We aim to classify these messages by
the user’s response likelihood. The
service could then only send notifications
that the user is likely to respond to.

Learning Models

Data Source
We used data from one Facebook
Messenger group that both group
members are in. This group has 27
users with over 10,000 messages.

We had different labelings per user. All
messages sent 20 min before messages
from that user was labelled “responded
to”. This threshold came from 2𝜎 of the
message time difference distribution:

Experimental Results
We focused on one of the most active members in the group. During our testing, we saw that users
had similar error, FP and FN rates, but this user had the best F1 scores:

We used a 70/30 train/test split of our data, which came out to 7900/3400 examples. We used
cross validation and feature selection to pick the best parameters and features for each model.

Features
For each user, we extracted features
they may consider when deciding
whether to respond:

[Number, Length,
Type, Sender, Day, Hour]

The Message Number is in the context
of a particular conversation, and the
Message Type is one of [Question,
Link, Comment]. We also considered the
text itself. For LSTM we passed in a
vector representation of the first 20
words and for all other models we
passed a bag of words.

Naïve Bayes:
We predict based on the result of:

Bernoulli Naïve Bayes:
Assume features are Multivariate Bernoulli [1]

Gaussian Naïve Bayes:
Assume features are Gaussian [1]

Support Vector Machine (SVM):
SVM solves the following to maximize the margin
and minimize the training error

Train Test
Model Error F1	Score Error F1	Score Precision Recall FP	Rate FN	Rate

Bernoulli NB 0.394 0.022 0.403 0.014 0.769 0.007 0.001 0.499
Gaussian	NB 0.594 0.573 0.593 0.577 0.406 0.999 0.499 0.001

Logistic	Regression 0.294 0.617 0.296 0.622 0.643 0.602 0.185 0.285
SVM	w/	RBF	Kernel 0.325 0.654 0.326 0.654 0.573 0.763 0.279 0.192
LSTM	Neural Net 0.244 0.729 0.292 0.682 0.609 0.774 0.252 0.185

We used SVM with the RBF Kernel below:

Discussion

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ob

ab
ili
ty

Characters	in	Most	Recent	Message	Sent

User's	Probability	of	Response	by	
Message	Length

y=0 y=1

While Naïve Bayes failed with our imbalanced data, we
mitigated the effects in our other models by weighting [1]
examples inversely proportional to their class frequency:

Looking at all our evaluation metrics, LSTM is our best
model for this problem. The main advantage LSTM has
is that it makes better use of contents of the message
than our other models. Interestingly, the message length
either hurt or didn’t change the performance of our
models. The graph on the right shows that our data
corroborates this result. We also found that users with
less imbalanced classes led to higher F1 scores. Finally,
our LSTM model had close to state of the art accuracy [2].

Future Plans

p(xi|y) = p(i|y)xi + (1� p(i|y))(1� xi)

p(xi|y) =
1q
2⇡�

2
y

exp

✓
� (xi � µy)

2

2�

2
y

◆

argmax

y
p(x|y)p(y)

Logistic Regression:
The hypothesis function is:

h

✓

(x) = g(✓Tx) =
1

1 + e

�✓

T
x

min
�,w,b

1

2
kwk2 + C

mX

i=1

⇠i s.t. y
(i)(wT

x

(i) + b) � 1� ⇠i

⇠i � 0, i = 1, · · · ,m

In Lee and Demoncourt’s research with classifying short-text, convolutional neural networks proved
to give great results as well which gives us another model to implement [1]. We could also go deeper
into Natural Language Processing and find other message types, named entities, topics, etc. We
could also try testing additional group chats and users. Finally, it would also be interesting to try and
implement the classifiers we built into a real notification filter by building a basic chat application.

References
[1] scikit-learn developers 2016, "scikit-learn: Machine learning in python," 2010. Web. http://scikit-learn.org/stable/documentation.html.
[2] Lee, Ji Young, and Franck Dernoncourt. "Sequential Short-Text Classification with Recurrent and Convolutional Neural Networks." Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2016): n. pag. Web.

Long Short Term Memory (LSTM):
Our LSTM neural network also has additional layers.

Ct = ft ⇤ Ct�1 + it ⇤ C̃t

ht = ot ⇤ tanh(Ct)

embedding

convolution max pool lstm
fully connected

Each LSTM cell computes the following [2]:

wC1 =

num train examples

num train examples in class C1

25

K(x, z) = exp

✓
�kx� zk2

2�

2

◆

