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Motivation
Group messaging services send users 
notifications when they get messages. 
We aim to classify these messages by
the user’s response likelihood. The 
service could then only send notifications 
that the user is likely to respond to.

Learning Models

Data Source
We used data from one Facebook 
Messenger group that both group 
members are in. This group has 27 
users with over 10,000 messages.

We had different labelings per user. All 
messages sent 20 min before messages 
from that user was labelled “responded 
to”. This threshold came from 2𝜎 of the 
message time difference distribution:

Experimental Results
We focused on one of the most active members in the group. During our testing, we saw that users 
had similar error, FP and FN rates, but this user had the best F1 scores:

We used a 70/30 train/test split of our data, which came out to 7900/3400 examples. We used 
cross validation and feature selection to pick the best parameters and features for each model.

Features
For each user, we extracted features 
they may consider when deciding 
whether to respond:

[Number, Length, 
Type, Sender, Day, Hour]

The Message Number is in the context 
of a particular conversation, and the 
Message Type is one of [Question, 
Link, Comment]. We also considered the 
text itself. For LSTM we passed in a 
vector representation of the first 20 
words and for all other models we 
passed a bag of words.

Naïve Bayes:
We predict based on the result of:

Bernoulli Naïve Bayes:
Assume features are Multivariate Bernoulli [1]

Gaussian Naïve Bayes:
Assume features are Gaussian [1]

Support Vector Machine (SVM):
SVM solves the following to maximize the margin 
and minimize the training error

Train Test
Model Error F1	Score Error F1	Score Precision Recall FP	Rate FN	Rate

Bernoulli NB 0.394 0.022 0.403 0.014 0.769 0.007 0.001 0.499
Gaussian	NB 0.594 0.573 0.593 0.577 0.406 0.999 0.499 0.001

Logistic	Regression 0.294 0.617 0.296 0.622 0.643 0.602 0.185 0.285
SVM	w/	RBF	Kernel 0.325 0.654 0.326 0.654 0.573 0.763 0.279 0.192
LSTM	Neural Net 0.244 0.729 0.292 0.682 0.609 0.774 0.252 0.185

We used SVM with the RBF Kernel below:

Discussion
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While Naïve Bayes failed with our imbalanced data, we 
mitigated the effects in our other models by weighting [1] 
examples inversely proportional to their class frequency:

Looking at all our evaluation metrics, LSTM is our best 
model for this problem. The main advantage LSTM has 
is that it makes better use of contents of the message 
than our other models. Interestingly, the message length 
either hurt or didn’t change the performance of our 
models. The graph on the right shows that our data 
corroborates this result. We also found that users with 
less imbalanced classes led to higher F1 scores. Finally, 
our LSTM model had close to state of the art accuracy [2].

Future Plans
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Logistic Regression:
The hypothesis function is:
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In Lee and Demoncourt’s research with classifying short-text, convolutional neural networks proved 
to give great results as well which gives us another model to implement [1]. We could also go deeper 
into Natural Language Processing and find other message types, named entities, topics, etc. We 
could also try testing additional group chats and users. Finally, it would also be interesting to try and 
implement the classifiers we built into a real notification filter by building a basic chat application.
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Long Short Term Memory (LSTM):
Our LSTM neural network also has additional layers.

Ct = ft ⇤ Ct�1 + it ⇤ C̃t

ht = ot ⇤ tanh(Ct)

embedding

convolution max pool lstm
fully connected

Each LSTM cell computes the following [2]:

wC1 =

num train examples

num train examples in class C1

25

K(x, z) = exp

✓
�kx� zk2

2�

2

◆


