
Predicting Annual Earnings Based on Demographic and Employment Data
Maxime Voisin

Introduction

The U.S. Department of Commerce launched Census Bureau to gather

more data on the population’s annual earnings, employment and

demographics. Census Bureau provides a public dataset containing the

annual earnings as well as 41 employment/demographics variables for

~300,000 individuals.

I tackle the binary classification problem: based on these 41

employment/demographics variables, how well can I predict if

someone earns more than $50,000/year ?

Feature Engineering

Data Preprocessing

I. From Qualitative to Quantitative Data

I turned qualitative categorial features into nominal categorical

variables (label encoding) or separate indicator features (dummy

encoding). I also deleted meaningless features (0 variance) and

replaced null values with 0s.

II. Selecting Training and Test Examples

I set aside 200,000 examples for training, and the remainder

(~100,000) for testing. This split did not lead to any covariate shift:

classifiers were unable to recognize whether the data came from the

train or test data (66.6% accuracy, no better than the baseline).

III. Normalizing

I normalized all of our training data to have mean 0 and standard

deviation 1.

Ensemble learning

Results & Analysis

The following graph shows the precision/recall curve of the models I tested.

Fighting Imbalanced Classes

94% of the data belongs to one class of the target variable. The

baseline scores very high in terms of accuracy. How do I fight this?

I. Select appropriate metrics

In the context of imbalanced classes, accuracy does not provide

valuable feedback on the performance of classifiers. Instead, I rely on

confusion matrices (esp. precision and recall) and ROC curves.

II. Select an appropriate cross-validation strategy

I used stratified 3-Fold cross-validation to make sure that, in each cv

fold, the proportion of 0/1 target variable is identical to that of the

training set. Otherwise, some cv folds might receive too few training

examples from the “rare” class, undermining the classifier’s

performance.

III. Use class weights

When classifiers allow it, I penalize the most frequent class, by

weighting each class inversely proportional to its frequency. It

increased ROC AUC by 16%.

Fine-tune individual classifiers

I. Logistic Regression

I ran logistic regression with

L1 and L2 regularization. I

then fine-tuned the parameter

that controls regularization –

C - in order to maximize the

mean-squared ROC AUC

score using 3-fold cross-

validation: C=10

II. Feature selection

The previous steps increased the

number of features from 41 to 221.

I ran sequential backward-based feature

elimination. Features were selected

based on their mean-squared ROC AUC

score using 3-fold cross-validation. The

optimal number of features to keep was

171.

Before feature

engineering

After feature

engineering

Precision 0.70 0.72

Recall 0.35 0.39

Number of features selected

R
O

C
 A

U
C

 s
co

re

I. Computing new features

Based on raw features, I computed new relevant features. This enables

models to classify the data more easily. For instance, I computed net

capital as the difference between capital gains and capital losses. This

engineered feature ranked 3rd most useful feature in the classification

task !

Impact of feature engineering

Ranking Feature
Feature

importance

1 age 0.10

2 stock options 0.07

3 net capital 0.06

4 industry code 0.06

5
nb of people worked

for employer
0.05

Top 5 features after feature engineering

Regularization parameter (C, log scale)

R
O

C
 A

U
C

 s
co

re

II. Random Forests

I also used random forest models. The

ROC AUC score keeps increasing

with the number of estimators (trees).I

found a tradeoff between computation

time and performance, by setting this

parameter to 500: after 500, the score

increases very slowly with the number

of estimators.

I also fine-tuned the max_features

parameter, that controls the fraction of

features considered by each tree.

R
O

C
 A

U
C

 s
co

re

Max_features parameter

Precision

R
ec

a
ll

In order to leverage the strengths of each classifier, a grid-searched

logistic regression combines the predictions of:

- the fine-tuned logistic regression and random forest described

above

- non tuned SVM (linear and polynomial kernel)

- non tuned Naïve Baye classifier

Stacking requires a validation set: I split the training set (200,000

examples) between a working set (150,000) and a validation set

(50,000).

The stacking is still running at the time of writing the poster.

Ensemble learning results will be included results in the final report.

Log Reg and RF have

similar confusion matrices

(precision / recall)

I look at the ROC curve to

decide between the two

models.

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
a

te

Log Reg clearly outperforms

RF, with the following ROC

curve. The classifier scores a

ROC AUC of 0.84.

To further improve the Log

Reg performance, I changed

the classification decision

threshold (by default 0.5), in

order to have a better recall

score.

Discussion

This elegant solution - based on rich preprocessing, feature

engineering, optimization of individual classifiers and ensemble

learning enabled us to increase the ROC AUC from 0.62 to 0.84

(the ensemble learning results to come might improve this even

further).

This project also highlighted the most important features: age, stock

options, net capital, industry of work and number of people

managed at work.

Finally, a further step could be to incorporate more models in the

final stacking. One could also try to tackle this problem from a

regression (rather than classification) point of view, by considering

the target variable as a continuous variable and trying to predict it.

