JLEAGUE-L
| EGENDS

1 = |—1I

What is LOL?

- LOL(League of Legends) is an online multiplayer game where 10
players are matched up in 2 teams of 5 to choose game characters
and fight against each other.

- Each player’s level is represented by their Rank (25 in total)

- | wanted to use the supervised learning techniques that | learned in
CS229 to predict a player’s rank at the end of the season. Just
because we all want to know how high we can get!

REPLAY " -

! ‘;‘ % ¥ v . L LA M
L& TR, AN Y L R 8 7
5 *ﬂﬁ% 3 — “
< S
| ~ " ¥ .‘;}. s .
B o G o &] e EH: __ ‘85 = =
- ~ ‘I:.i;- : Bl
o R
F\ a ‘,m? »N _L W
—.a & i ‘ Iy
K \E 3 B :
g 2igd B (@ -

What is the Training Data?

1)

- Riot (The developer of LOL) provides a rich API allowing us to query
its internal gaming statistics of a given player.

- | used the Stats APl which returns a JSON object per player :
{"totalPhysicalDamageDealt": 6562106, "totalTurretsKilled": 124, "curRank": 25,
"totalSessionsPlayed": 236, "totalAssists": 2935, "totalDamageDealt": 11818577,
"mostChampionKillsPerSession™: 16,}

[@ Selecting Features

- Transformed each JSON object into a python dictionary

- Manipulate the dictionary to represent meaningful information
(ex. Death -> 1iDeath, Kills -> KillsIDeath). Total 57 Features!

- lused SVM with RBF Kernel for one of the learners, so did not add
experimental cross terms. (only added those with human-level meaning)

Total Kills Total Kills

Total Kills

Total Death x

Avg Kills

Total Death Kill/Death Total Death

— +

Total Wins Total Wins

Total Wins Avg Wins

Total Dmg Total Dmg Avg Dmg Total Dmg

Github Repository Reference

https://github.com/sjang92/LOLRankPredictor

Predicting Seasonal Rank Changes in League of Legends

Se Won Jang / swjang@stanford.edu
Stanford University, CS 229 Machine Learning

ud

Learning and Prediction Process

Once through with data collection I feature selection, I chose to try
two different output classes :

1. Predict the Exact End-season rank (25 classes total)

2. Predict Change in rank (Down, Constant, Up)

In order to compare 2 algorithms (Ada Boosting, SVM) for the 2
classification problems,| chose to use 10-fold cross-validation.

Try different models
Polynomial features
Riot Games

Server Cross Validation
(9:1 or 7:3)

Cross-product features

Collect Data Extract . L

]
B !

]

Prediction Results

The two models were trained with 600 LOL player season data. The
data were representative of the rank distribution of the LOL
population.

Rank Test Updown Task

Boosting Rank Test SVM Rank Test Boosting Updown Task SVM Updown Task

Before Feature Extraction 0.EB73 0.06E1 01473

]

Choice of Learning Algorithms -

| wanted to answer “how harder would it be to classify out of a much
larger class pool?”.l chose Ada Boosting, and SVM. My hypothesis was
that since | have 57 independent features that all contribute to the
rank change independently, AdaBoosting would perform great for
this problem.

1

a
==
|

- Support Vector Machine (SVM) with RBF Kernel

- Linear classifier that uses hinge loss for its objective. Given
labeled training data, outputs an optimal hyperplane which
categorizes new examples.

- AdaBoosting (Adaptive Boosting)

- Combines weak learners to a strong one

(i) Input: A distribution p, ... p™

et CREEE) and training set {(1‘.[""), ylifjl e,
with Z:Zl P =1 and p® >0

(i) Return: A weak classifier ¢; : R™ — {—1, 1} such that

m
Z,p(jijl {ym :/é %(I(i‘))} "
i=1 “

SVM: http://cs229.stanford.edu/extra-notes/cs229-notes3.pdf Boosting: http://cs229.stanford.edu/extra-notes/boosting.pdf

After Feature Extraction .28/ 0.0381 0.1202

B !

]

Understanding the Results

Interesting Results!
Take 1: Feature Extraction didn’t make a lot of difference (1 ~ 3%)
- Explanation : My hypothesis is that since the features are
independent, adding their cross-terms don’t have much effect

Take 2 : Predicting out of 25 classes is extremely hard
- Explanation : Both SVM and Boosting performed very poorly on
this, although SVM still performed much better than Boosting. |
think in order for boosting to work well with multi-class
problems, we need a lot of dataset to cover many types of
outcomes.

Take 3 : Ada Boosting worked much better than SVM (Up Down)

- Explanation : boosting algorithm performed very well with less
than 5% error rate, compared to the SVM model. | think this is
because there might not be an inherent relationship between the
features that makes a player go up or down in rank. An outcome
of a game may only be affected by one of the features, for
instance.

Riot API: https://developer.riotgames.com/api/methods MMR: https://na.op.gg/, https://na.whatismymmr.com Scikit-learn: http://scikit-learn.org
NOTE : Overlaps with my CS221 Project

https://developer.riotgames.com/api/methods
https://na.op.gg/
https://na.whatismymmr.com
http://scikit-learn.org
http://cs229.stanford.edu/extra-notes/cs229-notes3.pdf
http://cs229.stanford.edu/extra-notes/boosting.pdf
https://github.com/sjang92/LOLRankPredictor
https://github.com/sjang92/LOLRankPredictor

