
SHAWN HU (SHAWNGHU@STANFORD.EDU)
DATA

GAMEPLAY

FEATURES AND TRAINING DISCUSSION & FURTHER APPROACHES

BUILDING AN INTELLIGENT AGENT TO PLAY 9X9 GO

REFERENCES

RESULTS

Estimated skill of agent (kyu/ELO)

Both sets of features 18kyu/~400 ELO

Action features only 23kyu/~50 ELO

State features only 20kyu/~100 ELO

Raw UCT-MCTS 25kyu/0 ELO

Our dataset consists of 13,175 SGF files
which contain records of games played
on CGOS servers. The games were
played at 2500-2800 ELO (5-9 dan), a
high amateur to low professional rating.

PREDICTION

● RAVE: Caching MCTS search trees for
reuse in later computations

● Main difference between this bot and
better ones is good, plentiful
features. Higher end bots use CNNs
or DNNs to do their feature learning

● Dynamic komi: Bot plays much worse
when ahead because MCTS playouts
are optimistic. Automatically adjust
goals for petter perforamnce.

● Self-play not constructive: the agent
is not good enough to learn anything

● Raw computational optimization: 10
playouts per second is actually
considered extremely slow; for this
reason, most mid-level Go agents are
programmed in C or C++.

● S. Gelly and D. Silver, "Achieving Master
Level Play in 9 × 9 Computer Go," in
Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (2008)

● P.Baudis, “MCTS With Information Sharing”,
Masters Thesis, 2011

● E.C.D van der Werf, “Learning to Predict Life
and Death from Go Game Records, 2005

● MCTS diagram: Mciura - CC BY-SA 3.0

Our Go agent uses the UCT variant of
Monte Carlo Tree Search, the industry
favorite for handling Go’s large
branching factor. The algorithm works
by iteratively simulating games
according to an initially random policy,
then improving that policy using some
statistical methods based on the results.
In this project, the search is guided by
an learned linear evaluation function.

Our final agent, operating at a speed of
about 10 playouts per second, achieved
an estimated skill level of 18kyu
(low-mid amateur). For even 9x9 Go,
this is decent as a first attempt; for
reference, the upper bound in skill of a
raw UCT agent (running at ~2000 pps)
is ~5kyu. Further, the application of the
features, which was the main interest of
this project, made a notable difference.

From the board state, we extracted
indicators on the presence of 3x3, 2x2,
and 1x1 patterns at all coordinates on
the board. Symmetric patterns shared
weights. From the actions taken, we
extracted various features, including
distance from last move, captures, and
atari (threats). The weights for the
features were learned from the plays
and board states of the winners after
every move in every game. Training was
done using gradient ascent, with
winning states arbitrarily assigned a
value of 1 and η inversely proportional
to the number of learned moves.

We used these weights to guide the
MCTS search for efficiency purposes.
Our implementation of UCT initializes
tree nodes with “prior knowledge” of 1
win and 1 loss; we changed the priors
for an action a and successor state s’ by
adding ᶨ(s’, a) extra wins (minimum 0).

