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REFERENCES

RESULTS

Estimated skill of agent (kyu/ELO)

Both sets of features 18kyu/~400 ELO

Action features only 23kyu/~50 ELO

State features only 20kyu/~100 ELO

Raw UCT-MCTS 25kyu/0 ELO

Our dataset consists of 13,175 SGF files 
which contain records of games played 
on CGOS servers. The games were 
played at 2500-2800 ELO (5-9 dan), a 
high amateur to low professional rating.

PREDICTION

● RAVE: Caching MCTS search trees for 
reuse in later computations

● Main difference between this bot and 
better ones is good, plentiful 
features. Higher end bots use CNNs 
or DNNs to do their feature learning

● Dynamic komi: Bot plays much worse 
when ahead because MCTS playouts 
are optimistic. Automatically adjust 
goals for petter perforamnce.

● Self-play not constructive: the agent 
is not good enough to learn anything

● Raw computational optimization: 10 
playouts per second is actually 
considered extremely slow; for this 
reason, most mid-level Go agents are 
programmed in C or C++.
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Our Go agent uses the UCT variant of 
Monte Carlo Tree Search, the industry 
favorite for handling Go’s large 
branching factor. The algorithm works 
by iteratively simulating games 
according to an initially random policy, 
then improving that policy using some 
statistical methods based on the results. 
In this project, the search is guided by 
an learned linear evaluation function.

Our final agent, operating at a speed of 
about 10 playouts per second, achieved 
an estimated skill level of 18kyu 
(low-mid amateur). For even 9x9 Go, 
this is decent as a first attempt; for 
reference, the upper bound in skill of a 
raw UCT agent (running at ~2000 pps)  
is ~5kyu. Further, the application of the 
features, which was the main interest of 
this project, made a notable difference.

From the board state, we extracted 
indicators on the presence of 3x3, 2x2, 
and 1x1 patterns at all coordinates on 
the board. Symmetric patterns shared 
weights. From the actions taken, we 
extracted various features, including 
distance from last move, captures, and 
atari (threats). The weights for the 
features were learned from the plays 
and board states of the winners after 
every move in every game. Training was 
done using gradient ascent, with 
winning states arbitrarily assigned a 
value of 1 and η  inversely proportional 
to the number of learned moves.

We used these weights to guide the 
MCTS search for efficiency purposes. 
Our implementation of UCT initializes 
tree nodes with “prior knowledge” of 1 
win and 1 loss; we changed the priors 
for an action a and successor state s’  by 
adding ᶨ(s’, a) extra wins (minimum 0).


