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In addition to the regression task, we also wanted to test the accuracy of our
. . . . algorithms as classification problems. In other words, we wanted to test how well
MOt|Vat|On L| near Reg ression (@Offensive Rating of the our algorithms predicted the ‘win’ or ‘loss’ outcome of a game. After having
trained our models on more than 1052 games, we tested each approach on a set
of 264 games, and performed 20-fold cross validation to analyze accuracy,
precision and recall.
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