Gradient Boosted Trees to Predict

Store Sales

Maksim Korolev, Kurt Ruegg

mkorolev@stanford.edu, kruegg@college.harvard.edu

e aim to minimize prediction error for a
Wdata science competition involving predict-

ing store sales. We implement baseline
models that are surpassed by XGBoost implemen-
tation of gradient boosting trees. We further use
SigOpt Bayesian Optimization to modify the hy-
perparameters of the gradient boosted trees for
further reduction of prediction error.

Introduction

Machine learning forecasting techniques have a number of
applications for businesses. In particular, these methods
can work quite well for large chain stores that are able
to gather significant amounts of data. Using this data
to make informed decisions for the future can have large
financial consequences when scaling to a large number of
stores. Specifically, this information can inform businesses
on optimal staff levels, product shipments, and sales pro-
motions at each branch. On the data science competition
website Kaggle, the German pharmacy Rossmann posted
a challenge to the data science community to predict the
sales of their stores for a 6 week interval in the Fall of 2015
using data gathered from their stores from the previous 30
months [5].

In detail, each training example consisted of the following
features and response variable:

Features

Date discrete, non-ordinal

Day of Week discrete, non-ordinal
Store ID discrete, non-ordinal
Customers discrete, ordinal

Open binary

State Holiday discrete, non-ordinal
School Holiday binary

Store Type discrete, non-ordinal
Assortment discrete, non-ordinal

Competition Distance continuous

Competition Open Since Month/Year discrete, ordinal
Promo binary

Promo2 binary

Promo2 Since Year/Week discrete, non-ordinal

Promo Interval discrete, non-ordinal

Response Variable

Sales continuous

A brief explanation of the non-obvious features: Store
Type indicates 1 of 4 store designs. Assortment is 1 of 3
levels (basic, extra, and extended) of how large the store
assortment is. Competition Distance gives the distance in
meters to the closest competing drug store. Competition
Open Since gives the year and month when the closest
competitor opened. Promo indicates if the basic promotion
is active. Promo2 indicates if a store is participating in
a cyclic promotion that runs for 1 month, then takes 2
months off. Promo2 Since Year / Week indicates when the
store started participating in Promo2. Promolnterval gives
the months that Promo2 is active for a participating store
[5].

The training set consisted of data on 1115 stores from
Jan. 1, 2013 to Jul. 31, 2015. With the exception of a 180
stores that had an extended closure from Jul. 1, 2014 to
Dec. 31, 2014 all stores had entries for every day in the
time period.

The test set consisted of data from all 1115 stores for
the time range from Aug. 1, 2015 to Sep. 17, 2015. We
did not have access to the actual values of the response
variables in the test set, but we did have access to our
score on the test set. For the contest, we were allowed to
make 5 submissions per day.

Contest Background

Concretely, all our models h(z) attempt to map our feature
space x, where d is the number of features, to our response

Page 1 of 6

variable y

h(z) =4
reRYjeR

The competition utilizes Root Mean Square Percent
Error as the scoring method:

Linear Regression Model

The first model we tried was a simple linear regression
model, which we made by transforming all discrete non-
ordinal features into binary encoding and plugging our
features into the built-in multiple linear regression function
in R. As expected, our initial model was fairly inaccurate:

RMSPE : .25412 (2)

Mean Guess: A Simple Decision
Tree

We noticed that most stores had similar sales across years:

Year
13
— 14

()

Sales

Day

Using this insight we made our simple Mean Guess Model.
In order to predict the sales of a day in 2015 we took the
average of 2013 and 2014 for our given day and given store.

The following equation is a general formulation of our
model. The index set A gives the indices of the features that
must match when we make a prediction. Our hypothesis
function takes the average of all the training examples that
match all the features that are specified in A.

N i i
Dim1 y® HjEA 1{x§. e z;}
~ -
Zi:l HjeA 1{93§'Z) =}

RMSPE : .18237

h(z) = 3)

(4)

From here we examined machine learning literature and
realized that we had created a decision tree, albeit a very
simple version. A decision tree is a tree where each node
splits the input space of the node among its children. In

our simple mean guess decision tree, we performed a multi-
way split along 1115 stores and then did a 365 way split
on each day of the year to produce our result. We then
took the mean of the members of each leaf to make our
predictions. We next chose to pursue an algorithm called
Gradient Boosted Machines, which have been shown to
perform the best out of all decision tree learning methods,
assuming model parameters have been optimized [11].

Gradient Boosted Trees

The gradient boosted trees method is an ensemble learning
method that combines a large number of decision trees to
produce the final prediction.

The “tree” part of gradient boosted trees refers to the
fact that the final model is a forest of decision trees. A
decision tree is defined as a model where each non-leaf
node represents a split on a particular feature, each branch
represents the flow of data based on the split, and each
leaf represents a classification. An individual decision tree
is grown by first ordering all features and checking each
possible split for every feature. The split that results in
the best score for some objective function becomes the rule
for that node. The splitting process continues until some
termination condition is met. Termination can be caused
by running out of features to split on or reaching pure
sets of training examples, but usually an early termination
condition will be met before this. Early termination of
tree growth is important to prevent overfitting, which will
be discussed later. Finally, in order to make a prediction,
each leaf must have an associated value. The response
of the leaf will usually be the majority response of its
training examples for classification problems and the mean
of training examples for regression problems.

“Boosted” means that the model is built using a boosting
process. Boosting is build on the principle that a collection
of “weak learners” can be combined to produce a “strong
learner,” where a weak learner is defined as a hypothesis
function that can produce results only slightly better than
chance and a “strong learner” is a hypothesis with an
”arbitrarily high accuracy” [3]. The hallmark of all boosting
methods is the additive training method which adds a new
weak learner to the model in each step. In the case of
gradient boosted tree, the weak learner is a new decision
tree. This is shown in the below equation, where F(z) is
our full model after ¢ — 1 rounds and h(x) is the new tree
we are adding to the model.

Fy=0
Fi(z) = Fi—1(z) + h(x)

The “gradient” portion of gradient boosted trees refers
refers to the method by which the new function is added
to the model. The key idea is that each new function is an
attempt to correct the errors of the model built in previous
rounds. Thus, this new function h(z) should be fit to
predict the residual of F;_1(z). For XGBoost, this insight
is used during the derivation of the the final objective
function.

Page 2 of 6

In the XGBoost package, at the t*" step we are tasked
with finding the tree F; that will minimize the following
objective function:

Obj(Fy) = L(F;—1 + Fy) + Q(Fy) (5)

Where L(F;) is our loss function and Q(F}) is our regu-
larization function.

Regularization is essential to prevent overfitting to the
training set. Without any regularization, the tree will split
until it can predict the training set perfectly. This will
usually mean that the tree has lost generality and will not
do well on new test data. In XGBoost, the regularization
function looks like this:

T
1 2
Q(F,) =~T + §Azwj

j=1

(6)

Where T is the number of leaves in the tree, w; is the
score of leaf j, A is the leaf weight penalty parameter, and
v is the tree size penalty parameter.

Determining how to find the function to optimize the
above objective function is not clear. In order to create
a concrete way of selecting our next tree, we must make
an assumption in order to manipulate the objective func-
tion. First, we assume a fixed tree structure in order to
produce an objective function that will allow us to com-
pare different tree structures resulting from different tree
splits. An extended derivation that can be read in detail
in a presentation given by the author of XGBoost [4]. we
produce the following objective:

T
Obj(F,) = —% Z 7 (7)

Gj = Z 8Q<t71>l(yi, Q(til))

i€l

Hy = 020 l(ys§"Y)

I'={ilq(z:) = j}

Where ¢(z) maps input features to a leaf node in the tree
and I(y;,) is our loss function. This objective function is
much easier to work with because it is now gives a score
that we can use to determine how good a tree structure
is. From here we can choose splits that will minimize the
objective function. Also, once we have no splits that can
further decrease the objective function, we will have our
termination point. This equation can be manipulated into
a gain function, which is the final equation that does the
dirty work of picking each feature splits in XGBoost at
each step in tree growth.

Gi
Hr +)\

GQR _ (GL+GR)2 B
Hr + A HL+HR+)\)

Gain = (8)

Where R and L represent the right and left child nodes,
respectively, that would be created in a given split. Gain
is then maximized over all possible split options in all the
nodes in the current tree.

Parameters

XGBoost requires a number of parameters to be selected.
The following is a list of all the parameters that can be
specified:

n(eta) Shrinkage term. Each new tree that is added has
its weight shrunk by this parameter, preventing over-
fitting, but at the cost of increasing the number of
rounds needed for convergence.

~v(gamma) Tree size penalty
max depth The maximum depth of each tree

min child weight The minimum weight that a node can
have. If this minimum is not met, that particular split
will not occur.

subsample Gives us the opportunity to perform ”bagging,”
which means randomly sampling with replacement
a proportion specified by parameter of the training
examples to train each round on. The value is between
0 and 1 and is a method that helps prevent overfitting.

colsample bytree Allows us to perform ”feature bagging,”
which picks a proportion of the features to build each
tree with. This is another way of preventing overfit-
ting.

A(lambda) This is the L2 leaf node weight penalty

Target Variable Transformation

The scoring method of the competition differed from the
loss function included in the gradient boosted tree library
(Root Mean Square Percent Error vs. Square Loss). This
meant that we either had to transform our target variable or
write our own loss function. It turns out that doing a simple
log transformation of the target variable is theoretically
sound as long as the difference between our target values
and prediction values is small. See Appendix A for a
confirmation of correctness.

RMSPE(y®W, 4 ~ (Iny® — Inj®)

1

9)

n

S|

K2

Cross Validation

We noticed sales are similar across years. Therefore, we
theorized that a good validation set that could mimic the
test set would be the sales in 2014 during the same time
period as the competition test set (Aug. 1, 2015 - Sep. 17,
2015). While rolling window validation is the recommended
approach to time series, we believed that the consistent
pattern of sales and the computational benefits (rolling
window validation takes significantly longer) outweighed
the cons.

For our first result we simply converted all our features
into numerics and fed them into the XGBoost algorithm
and got the following score:

Page 3 of 6

RMSPE : .1363 (10)

‘Validation Set RMSFE

#Boosting Rounds

The above figure shows the learning rate of the XGBoost
training process. In order to pick our optimal model, we
choose the boosting iteration that minimizes validation
error.

External Data

Our data set also had room for improvement. There were
many external factors that influence store sales that were
not given to us in the original data set. We added informa-
tion about the weather for a given day and region using the
‘weatherData’ R package, which reads data from Weather
Underground [1]. We also gathered web search rates for
“Rossmann” from Google Search Trends for each region
and day [2]. Although stores are labeled without region
information, there is variation in which days are holidays
between the German states. Using the holiday information,
it is possible to label which region of Germany each store
is in. This allowed us to link each store the Google Search
Trends and weather of its region [5]

Feature Variable Transformations

Gradient boosted trees are good at handling continuous
and discrete ordinal data. However, unordered discrete
data can be problematic because of the implied ordering
that is created when the data is represented numerically.
We had two options in this situation: one-hot encoding
or imposing order. One-hot encoding simply creates a
binary variable for each instance of a feature to remove the
implied ordering. The second option was to put our own
ordering on these features. We ultimately chose the second
option because one-hot encoding can be prohibitively slow
for features with a large number of possible values [6].
The order that we chose to impose on our discrete non-
ordinal features was to take the mean of the response
variables for all instances of each feature. For example, for
each store we took the average sales for every example of
that store in the training set and replaced the store label
with that value. This resulted in unique values for each
store, but introduced an ordering based on the average sales

of that store. We did mean response variable replacement
with Store, Day, and Month.

Although imposing order is often better than the random
order of non-ordinal data, it can be problematic if the
order introduced is incorrect and we artificially force the
tree building algorithm to only pick splits that follow the
imposed order. We did find an improvement in our model
after introducing these transformations, which indicated
that our imposed order was effective.

Time Series

A final consideration that we had to deal with was the fact
that we had time series data. Time series data is any set
of data over a sequential time interval. Data of this nature
often exhibits autocorrelation, which is the correlation of
our response variable with itself at different points in time.
Part of this was taken into account by keeping track of the
Day of Week, Month, and Year. These variables helped to
explain cyclic variation in the data. In order to account for
possible autocorrelation, we decided to add lagged variables
that contained the sales for previous days into each our.
This was problematic because our test set did not have
concrete information about previous days sales, so we were
required to do iterative prediction, feeding our predicted
sales into subsequent days to serve as lagged variables.
This introduced the danger of error accumulation. We also
cross validated using iterative prediction to select a model
that did not rely too heavily on the unstable information
in the lagged variables [7].

Specifically, we cross validated on a date range that
matched the size of our test set (48 days). We introduced
lagged variables of the sales from the previous 7 days from
the same store. This turned out to not be effective with
our current set of parameters and will be discussed further
in the results section.

Bayesian Optimization

In order to tune the parameters of our gradient boosted
trees model, we chose to use Bayesian optimization. This
method is much faster than grid search and is able to
arrive at a more optimal solution than random parameter
search. Bayesian Optimization is a black box method that
takes a list of parameters and a function and finds the
optimal parameter set for the function. The process uses
the information from all previous parameter set guesses in
order to determine the next set of parameters to try.

The use of Gaussian Processes for modeling loss functions
has long been recognized as a good method for optimizing
hyperparameters [9]. Gaussian Processes interpolate (i.e.
curve fit) data with high regularity (i.e. non-erratically)
using a proper choice of covariance kernels. Using bayesian
optimization, a black box function that is costly to train
can be optimized in the least amount of time, assuming a
prior [8].

For our problem, given a set of already sampled hy-
perparameters x = {z1,...,zx} in R? and corresponding
sampling function y = {y1,...,yn} , such that y = f(zy)

Page 4 of 6

for 1 < k < N we want to find a continuous function s
such that s(zy) =y for 1 <k < N.

Here, the only choice that makes sense for our sampling
function is the cross validation error for a given set of
parameters. Because we cannot assume eta is normally
distributed, we held it constant at a sufficiently low number
(25% of the default value). We also varied number of boost-
ing rounds internally as it scales based on the validation
set (see learning rate). The rest of the hyperperamaeters
were optimized by SigOpt.

Also, we estimate noise free observations as we only have
a single validation set (k-fold or repeated cross validation
would normally be a good estimate of this error). Be-
cause we assume a gaussian prior, we must also choose a
covariance kernel K (x, z) modeled by covariance matrix K

K(z1,21) K(x1,21)
K= : :
K(lﬁN,xl) K(IN,JL‘N)
with basis
K(z,z1)
ka)=|
K(z,zn)

and s defined as:

s(z) = k(zx)TK 1y (11)
we can calculate our posterior:
-1 1 _
pyle K) = (2m)" det K) 7 exp(—5y" K 'y) (12)

Using this posterior, we can then use an acquisition func-
tion to calculate the next choice to sample. This function
must properly balance the tradeoff between exploration
and exploitation (i.e. choosing to sample where there is
a lot of uncertainty or maximizing already known local
optima). For instance, the expected improvement acquisi-
tion function determines the expected improvement over a
target variable t evaluating the posterior at x:

BI(e) = Bimar0ut)] = [(=)plolo)d, (13)

— 00

The choice of a kernel for Gaussian fitting is not a trivial
process; neither is the selection of an acquisition function
an easy task. Fortunately, there is software available that
focuses on optimizing these methods. We choose to use
SigOpt for its well implemented API, integration for floats
and integers, parallelism,and superb results.

Results

Our initial run with stock parameters and unmodified
features of XGBoost resulted in a validation score of 0.1354
RMSPE. We wondered what feature engineering could
do, and after implementing feature manipulation specified
in methods, the RMSPE was reduced to 0.12013. With

SigOpt optimization, we were able to get a 6% decrease
in error to 0.1144 over 150 observations. Our results with
these methods on the test set (leaderboard) resulted in
0.1363, 0.12112, and 0.1110 RMSPE, respectively. We saw
variation between our validation set and test set. This
small amount of variance, though, can be explained to
random chance.

Table 1: RMSPFE Results

Model Validation Test
Linear Model N/A 0.2541
Mean Guess N/A 0.1824
Boosted Tree Initial 0.1354 0.1363
Boosted Tree External Data 0.1201 0.1211
Boosted Tree Optimized 0.1144 0.1110
Boosted Tree Kitchen Sink 0.1050 0.1181

Next, we theorized that trees should be resilient to noise
because each tree is built with optimal features based
on the loss function. Therefore, we took a kitchen sink
approach. We added all possible predictors that we had
gathered. Number of boosting rounds and the time it took
to train the model at each step significantly increased with
this increase in complexity. Our validation error decreased
to 0.10501. Unfortunately, due to resource constraints, we
were not able to optimize this parameter set with SigOpt.
Furthermore, our test error did not decrease from our
previous low of 0.1110.

Finally, we noticed autocorrelation in our training set.
Therefore, we theorized that addition of lagged variables
would help explain the data. We attempted adding one
lagged variable as well as one week worth (7 days), which
would account for the spikes seen in Figure 1. We tested
with a few parameters of the successful trees found for the
data without the one day lagged variables. Performance
was similar, although one day lagged variables were far
more costly to compute. One week of lagged variables, on
the other hand, performed far worse (around 0.20 RMSE).
We account this for the fact that the algorithm is weighing
the lagged variables extremely heavily, but when we fore-
cast them we are exponentially multiplying error. Refitting
the parameters using Bayesian Optimization for the model
with the lagged variables turned out to be highly time
intensive. We hope to rerun SigOpt to see if the lagged
variable model outperforms our current best with optimal
parameters when we have the time to recompute.

Another future avenue is to implement rolling window
cross validation. Currently our cross validation set is quite
small and leads to overfitting on the narrow window of
time that it covers. Rolling window cross validation would
increase the size of cross validation and thereby improve the
generality of our model. The problem lies in the amount of
time required for rolling window cross validation models.

References

[1] http://www.wunderground.com/

[2] https://www.google.com/trends/

Page 5 of 6

[3] Shapire, Roberty E. “The Strength of Weak Learnabil-
ity.” Machine Learning 5 (1990): 197-227.

[4] Chen, Tiangi. “Introduction to Boosted Trees.” Uni-
versity of Washing Computer Science. University of

Washington, 22 Oct. 2014. Web.

“Rossmann Store Sales.” Kaggle.
https://www.kaggle.com/c/rossmann-store-sales.

Web.

Prettenhofer, Peter. “Gradient Boosted Regression
Trees.” PyData. 14 Apr. 2014. Lecture.

Bontempi, Gianluca. ”Machine Learning Strategies for
Time Series Prediction.” Machine Learning Summer
School. ULB, Brussels. Lecture

J. Mockus, V. Tiesis, and A. Zilinskas. The application
of Bayesian methods for seeking the extremum. In
L.C.W. Dixon and G.P. Szego, editors, Towards Global
Optimization, volume 2, pages 1177129. North Holland,
New York, 1978.

Snoek, Jasper. “Practical Bayesian Optimization of
Machine Learning Algorithms.” University of Toronto,
29 Aug. 2012. Web

[10] “SigOpt Blog.” SigOpt. Web.
http://blog.sigopt.com/post /134931028143 /sigopt-in-
depth-profile-likelihood-vs-kriging.

[11] Hastie, Trevor, Robert Tibshirani, and J. H. Friedman.
“Chapter 15.” The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. 2nd ed. New
York: Springer, 2009. 589-91. Print.

Appendix

A

Show that RMSPE is the same as RMSE of log transformed
response variable:

Ly — g
i=

1
RMSPE = ﬁZ(

7 y(l)

1, . .
RMSE = {/—(y® — §(®))2
n
In order to make RMSPFE equal RMSE we need to
find a function f(y) that will make:

Y@ — g

FD) = £ = (1)

@

We can approximate f(p) using Taylor Expansion, with
the assumption that § (the difference between our predic-
tion and response variables) is small:

5=y — g0
FGD) = fyD +6) ~ f(t) + f(t)o + ...

Drop the higher order terms of the Taylor Expansion
and plugging into equation (1) and simplifying:

0 =y

FO) + £ ()0~ fy) 0
y

This shows that the correct way to make RMSPE and
RMSE approximately equal is to take the log transforma-
tion of our prediction and target variables.

Page 6 of 6

