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Introduction 
    Proper classification of heart abnormalities 
can lead to significant improvements in 
predictions of heart failures. The variety of 
patient attributes that factor into arrhythmia 
classification and the number of resulting 
arrhythmia classes make this a complex 
problem to solve. Here, I use UCI’s arrhythmia 
database[1] and apply a supervised learning 
algorithm, implemented in Matlab, to train and 
classify test data into 16 separate classes of 
heart conditions.  
    The dataset is contains 452 patients and 279 
features per patient. The features include patient 
attributes such as age, height, weight, and 
gender as well as quantized ECG data such as 
the amplitude and width of the R, Q, and S 
waves. The patients are separated into 16 
different classes, including one class of normal, 
14 classes of various heart conditions (coronary 
heart disease, AV block, etc.), and one class of 
other. A small fraction of features are missing in 
the original dataset as well. 
     I implemented a random forests training 
algorithm combined with feature selection and 
data sampling techniques for maximum 
classification accuracy across all 16 classes. In 
general, the work presented here used 70% of 
the samples for training and 30% of the samples 
for testing. 
 
Data Preprocessing 
     There are 408 missing attributes in the 
dataset as denoted by ‘?’. This corresponds to 
0.32% of the overall dataset. 
     I tried several different methods to fill in this 
missing data. These methods included replacing 
missing features with ‘0’s as well as the mean of 
each particular missing feature across all 
patients. The difference between each method 
was not observably significant in the final 
classification results, as the missing attributes 
did not represent a large portion of the data. 

Finally, the method I went with was to fill in 
each missing attribute with the corresponding 
feature of the patient’s nearest neighbor by 
Euclidean distance. This seemed the most 
reasonable, although its results on accuracy 
were not significant. 
 
Feature Selection  
     I implemented forward search feature 
selection based strictly on the correlation 
between each feature and the overall 
classification accuracy using a random forests 
approach. My feature selection algorithm used 
10-fold cross validation to select the best 100 
features out of the 279 presented. For feature 
selection purposes, accuracy was described as 
the number of misclassified patients across all 
classes/the total number of patients. 
     As shown in Figure 1, overall classification 
error rate decreased significantly up to the 10th 
feature added, after which there was no 
significant improvement with additional 
features.  
 

 
Fig. 1. Number of features used versus test error rate. 
Error rate no longer decreases with additional features 
after about the 10th feature added.  
 
    In this project, I did not find it to be the case 
that as the number of features added increased, 
the training error increased while test error 
decreased. Rather, training and test error 
plateaued after around the 10th feature. Both the 



testing and training error rate hovered around 
15% overall misclassifications, signifying that 
this was not a variance/bias issue. 
    Here, reducing the number of features used 
through feature selection is beneficial not 
because of increased accuracy, but because of 
decreased processing time, which would have 
greater implications if similar prediction 
techniques was applied in real-time. As long as 
we have the 10 best features, we can be assured 
that accuracy results will not significantly 
improve with additional features. 
 
Test and Training Data Sampling 
     Several traits of the original dataset heavily 
limit classification accuracy.  Out of the 452 
patients in the dataset, over half of them are in 
class 1 (normal), and several classes have five 
or fewer samples in them. The unbalanced 
nature of the dataset makes it much more likely 
that underrepresented classes are misclassified. 
In order to counter this effect, I preprocess the 
data through both sampling and skewing before 
any training and testing is done. 
     Sampling is done by taking the original 
distribution and resampling at random with 
replacement until I draw the same number of 
samples as the original dataset. Random 
sampling with replacement has the effect of 
redistributing the skew of the data to create 
more balanced classes. Although better than the 
original dataset, the sampled data still has 
underrepresented classes. Next, I skew the data 
by replicating each class that contains less than 
10 samples. Thus, all classes that contain less 
than 10 patients have each of those patients 
presented twice in the dataset after skewing.  
    The class distribution of the dataset, from the 
original distribution, through sampling, and 
finally through skewing, is presented in Table 1. 
 
Table 1:  Distribution of data: original, after sampling, 
and after skewing.  

Class Labels Origi
nal 

Sam
pled 

Ske
wed 

01 Normal 245 235 235 
02 Ischemic changes 

(coronary artery 
disease) 

44 43 43 

03 Old Anterior 
Myocardial 
Infraction 

15 9 18 

04 Old Inferior 
Myocardial 
Infraction 

15 18 18 

05 Sinus tachycardy 13 11 11 
06 Sinus bradycardy 25 26 26 
07 Ventricular 

premature 
contraction (PVC) 

3 5 10 

08 Supraventricular 
premature 
contraction 

2 1 2 

09 Left bundle branch 
block 

9 5 10 

10 Right bundle 
branch block 

50 64 64 

11 1. Degree AV block 0 0 0 
12 2. Degree AV block 0 0 0 
13 3. Degree AV block 0 0 0 
14 Left ventricule 

hypertrophy 
4 7 14 

15 Atrial fibrillation or 
flutter 

5 5 10 

16 Others 22 23 23 
    
    The result on overall accuracy of this data 
manipulation is a decrease in the number of 
misclassifications by ~10%. 
    Next, I separate the training data from testing 
data. Following sampling and skewing, I 
randomly sample 70% of the skewed data 
without replacement for training purposes. 70% 
training is high enough that classification error 
rate remains low and low enough that there is 
enough test data left to represent all the classes. 
Then, every sample in the original dataset that is 
not part of the training class is selected for 
testing. 
    Note that after sampling and skewing, the 
data will have repeats. This only affects the 
training, and the data selected for training will 
include repeats so that underrepresented classes 
in the original dataset get enough representation 
in training. Every sample used for testing is 
unique. 



    Testing error decreases as I increase the 
percentage of data points used for training. The 
result is shown in Figure 2. Elsewhere in this 
report, percentage used for training remains 
constant at 70%. 
 

Fig. 2. Overall classification error rate on test samples 
vs. percentage of data used for training. This runs on a 
random forests algorithm using the top 20 features. 
 
Training Model 
     The multi-class nature of this dataset calls 
for classification using a random forests 
algorithm. This algorithm contains multiple 
decision trees and selects the average of the all 
the trees’ classification results as the final 
classifier output. The overall classification error 
versus the number of decision trees used is 
produced in Figure 3. This report uses the 
results from 50 trees. 
 

Fig. 3. Number of trees versus overall classification 
error 
 

     The dataset is multi-class, and it contains 
more features than patient samples. 
Furthermore, many of these 16 classes contain 
small numbers of patients, and patient attributes 
are often highly correlated. With these features, 
classification through other algorithms, such as 
SVM, naïve Bayes, and logistic regression did 
not produce as great results as the random 
forests classifier did. I explored both an SVM 
approach as well as a logistic regression 
approach (for differentiating between normal 
and all the other unhealthy classes), but overall 
misclassification error rate for those models 
hovered around 40% - 50% compared to the 
15% error rate of random forests. 
    The ensemble of decision trees created from 
the training data is then used to classify the test 
data. 
  
Results 
    Defining overall classification accuracy as 
simply: 
 

#  𝑡𝑜𝑡𝑎𝑙  𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠  
#  𝑡𝑒𝑠𝑡  𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 

 
I found that overall accuracy hovers around 
85% using 20 features and 70% training data 
across multiple runs. However, because the 
classes are uneven, overall classification 
accuracy as defined above may not be the best 
indicator of classification results. 
    In order to get a better understanding of 
accuracy, I also find the number of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN) per 
class. Using these, I calculated the per class 
precision, recall, f-score, and acc (redefined). 
They are described as follows: 
 

𝑎𝑐𝑐 =
(𝑇𝑃   +   𝑇𝑁)
(𝑃 + 𝑁)

 

 
,where P and N are the total number of positives 
and negatives per class. 
    Precision, recall, and fscore are by the 
traditional definitions: 
 



𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃  

(𝑇𝑃 + 𝑇𝑁)
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃  

(𝑇𝑃 + 𝐹𝑁)
 

 

𝑓𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)  
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

 

 
    The results are summarized in Table 2. The 
average of each is the per class result multiplied 
by the number of test samples for that class over 
the total number of test samples. 
 
Table 2. Accuracy results by class 

Class Acc Precision Recall F-score 
01 0.8828    0.8333  0.9589  0.8917 
02 0.9586    0.8000  0.6667  0.7273 
03 0.9862    0.7143 1.0000  0.8333 
04 1.0000    1.0000  1.0000  1.0000 
05 0.9793    1.0000  0.5000  0.6667 
06 0.9655    1.0000  0.4444  0.6154 
07 1.0000    1.0000  1.0000  1.0000 
08 1.0000    1.0000  1.0000  1.0000 
09 1.0000    1.0000  1.0000  1.0000 
10 0.9655    0.8571  0.9000  0.8780 
11   NaN     NaN     NaN     NaN 
12   NaN     NaN     NaN     NaN 
13   NaN     NaN     NaN     NaN 
14 1.0000    1.0000  1.0000  1.0000 
15 1.0000    1.0000  1.0000  1.0000 
16 0.9724    1.0000  0.4286  0.6000 
avg 0.9280    0.8700  0.8552  0.8434 

 
Figure 4 shows the confusion matrix of how the 
classes are being misclassified: 
 
Discussion 
    While the majority of classes have high 
accuracy scores, the lowest accuracy scores 
occur in classes 5, 6, and 16. These three classes 
all have low recall scores, meaning that out of 
all the patients who actually have the disease as 
marked by 5, 6, and 16, this algorithm has 
trouble classifying them as their respective 
classes. In fact, out of the 7 test cases that are in 
class 16 for the confusion matrix above, more 

are classified as class 1 rather than class 16 (4 
vs 3).  A large portion of misclassifications also 
all have the similarity that they are classified as 
1 when the actual target class is something else. 
 

 
 
Fig. 4. Confusion matrix. For each class, this shows 
what the test sample actually is (target class) versus 
what it is being classified as (output class). Proper 
classifications are shown in the diagonal, and the 
overall accuracy rate is shown on the bottom right hand 
corner. 
 
Conclusions 
    For this particular dataset, a random forests 
training algorithm provides the best 
classification results across all 16 classes. Due 
to the skewed nature of the original dataset, 
resampling and re-skewing the data to give 
more weight to underrepresented classes during 
training significantly increased all overall 
accuracy metrics. 
    The accuracy scores presented here are 
comparable to other learning algorithms on the 
same dataset as presented in literature. Typical 
accuracy metrics range between 70% - 90%, as 
summarized in Ozcift’s paper [2]. 
 
Future Work 
    There are several things that could be done as 
future work. 



    First, out of the 279 features presented, many 
are correlated. Therefore, it is possible to 
explore dimensionality reduction algorithms, 
although in this case, the number of training 
samples exceeded the number of features 
present. However, there are other things that 
could be done because much of the data is 
correlated. For example, rather than viewing 
features like height and weight as separate 
attributes, it might be reasonable to combine 
them and present the pair as a weight-height 
ratio. Similar things could also be done with the 
ECG data. 
    Second, although not explored in this project, 
a cost matrix is also something that could be 
very useful to a problem like arrhythmia 
classification. The cost of misclassifying a sick 
patient as healthy, or misclassifying a sick 
patient as having an incorrect type of sickness, 
might be greater than the cost of misclassifying 
a healthy individual as sick. The medical 
implications of various types of 
misclassifications should be taken into account 
when designing such learning algorithms. 
Furthermore, implementing a cost matrix might 
also prove to be beneficial in improving 
accuracy, as placing a greater cost on often 
misclassified classes could improve accuracy 
results for those classes. 
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Note 
This work was done partly in collaboration with 
Lee Tanenbaum. We submitted the project 
proposal and mid-project report together. 
However, because we each largely worked on 
our own standalone pieces of code and found it 

too hard to integrate in the end, we decided to 
write separate final reports. I have previously 
emailed the CS229 staff about this. 
 


