
Arrhythmia Classification for Heart Attack Prediction
Michelle Jin

Introduction
 Proper classification of heart abnormalities
can lead to significant improvements in
predictions of heart failures. The variety of
patient attributes that factor into arrhythmia
classification and the number of resulting
arrhythmia classes make this a complex
problem to solve. Here, I use UCI’s arrhythmia
database[1] and apply a supervised learning
algorithm, implemented in Matlab, to train and
classify test data into 16 separate classes of
heart conditions.
 The dataset is contains 452 patients and 279
features per patient. The features include patient
attributes such as age, height, weight, and
gender as well as quantized ECG data such as
the amplitude and width of the R, Q, and S
waves. The patients are separated into 16
different classes, including one class of normal,
14 classes of various heart conditions (coronary
heart disease, AV block, etc.), and one class of
other. A small fraction of features are missing in
the original dataset as well.
 I implemented a random forests training
algorithm combined with feature selection and
data sampling techniques for maximum
classification accuracy across all 16 classes. In
general, the work presented here used 70% of
the samples for training and 30% of the samples
for testing.

Data Preprocessing
 There are 408 missing attributes in the
dataset as denoted by ‘?’. This corresponds to
0.32% of the overall dataset.
 I tried several different methods to fill in this
missing data. These methods included replacing
missing features with ‘0’s as well as the mean of
each particular missing feature across all
patients. The difference between each method
was not observably significant in the final
classification results, as the missing attributes
did not represent a large portion of the data.

Finally, the method I went with was to fill in
each missing attribute with the corresponding
feature of the patient’s nearest neighbor by
Euclidean distance. This seemed the most
reasonable, although its results on accuracy
were not significant.

Feature Selection
 I implemented forward search feature
selection based strictly on the correlation
between each feature and the overall
classification accuracy using a random forests
approach. My feature selection algorithm used
10-fold cross validation to select the best 100
features out of the 279 presented. For feature
selection purposes, accuracy was described as
the number of misclassified patients across all
classes/the total number of patients.
 As shown in Figure 1, overall classification
error rate decreased significantly up to the 10th
feature added, after which there was no
significant improvement with additional
features.

Fig. 1. Number of features used versus test error rate.
Error rate no longer decreases with additional features
after about the 10th feature added.

 In this project, I did not find it to be the case
that as the number of features added increased,
the training error increased while test error
decreased. Rather, training and test error
plateaued after around the 10th feature. Both the

testing and training error rate hovered around
15% overall misclassifications, signifying that
this was not a variance/bias issue.
 Here, reducing the number of features used
through feature selection is beneficial not
because of increased accuracy, but because of
decreased processing time, which would have
greater implications if similar prediction
techniques was applied in real-time. As long as
we have the 10 best features, we can be assured
that accuracy results will not significantly
improve with additional features.

Test and Training Data Sampling
 Several traits of the original dataset heavily
limit classification accuracy. Out of the 452
patients in the dataset, over half of them are in
class 1 (normal), and several classes have five
or fewer samples in them. The unbalanced
nature of the dataset makes it much more likely
that underrepresented classes are misclassified.
In order to counter this effect, I preprocess the
data through both sampling and skewing before
any training and testing is done.
 Sampling is done by taking the original
distribution and resampling at random with
replacement until I draw the same number of
samples as the original dataset. Random
sampling with replacement has the effect of
redistributing the skew of the data to create
more balanced classes. Although better than the
original dataset, the sampled data still has
underrepresented classes. Next, I skew the data
by replicating each class that contains less than
10 samples. Thus, all classes that contain less
than 10 patients have each of those patients
presented twice in the dataset after skewing.
 The class distribution of the dataset, from the
original distribution, through sampling, and
finally through skewing, is presented in Table 1.

Table 1: Distribution of data: original, after sampling,
and after skewing.

Class Labels Origi
nal

Sam
pled

Ske
wed

01 Normal 245 235 235
02 Ischemic changes

(coronary artery
disease)

44 43 43

03 Old Anterior
Myocardial
Infraction

15 9 18

04 Old Inferior
Myocardial
Infraction

15 18 18

05 Sinus tachycardy 13 11 11
06 Sinus bradycardy 25 26 26
07 Ventricular

premature
contraction (PVC)

3 5 10

08 Supraventricular
premature
contraction

2 1 2

09 Left bundle branch
block

9 5 10

10 Right bundle
branch block

50 64 64

11 1. Degree AV block 0 0 0
12 2. Degree AV block 0 0 0
13 3. Degree AV block 0 0 0
14 Left ventricule

hypertrophy
4 7 14

15 Atrial fibrillation or
flutter

5 5 10

16 Others 22 23 23

 The result on overall accuracy of this data
manipulation is a decrease in the number of
misclassifications by ~10%.
 Next, I separate the training data from testing
data. Following sampling and skewing, I
randomly sample 70% of the skewed data
without replacement for training purposes. 70%
training is high enough that classification error
rate remains low and low enough that there is
enough test data left to represent all the classes.
Then, every sample in the original dataset that is
not part of the training class is selected for
testing.
 Note that after sampling and skewing, the
data will have repeats. This only affects the
training, and the data selected for training will
include repeats so that underrepresented classes
in the original dataset get enough representation
in training. Every sample used for testing is
unique.

 Testing error decreases as I increase the
percentage of data points used for training. The
result is shown in Figure 2. Elsewhere in this
report, percentage used for training remains
constant at 70%.

Fig. 2. Overall classification error rate on test samples
vs. percentage of data used for training. This runs on a
random forests algorithm using the top 20 features.

Training Model
 The multi-class nature of this dataset calls
for classification using a random forests
algorithm. This algorithm contains multiple
decision trees and selects the average of the all
the trees’ classification results as the final
classifier output. The overall classification error
versus the number of decision trees used is
produced in Figure 3. This report uses the
results from 50 trees.

Fig. 3. Number of trees versus overall classification
error

 The dataset is multi-class, and it contains
more features than patient samples.
Furthermore, many of these 16 classes contain
small numbers of patients, and patient attributes
are often highly correlated. With these features,
classification through other algorithms, such as
SVM, naïve Bayes, and logistic regression did
not produce as great results as the random
forests classifier did. I explored both an SVM
approach as well as a logistic regression
approach (for differentiating between normal
and all the other unhealthy classes), but overall
misclassification error rate for those models
hovered around 40% - 50% compared to the
15% error rate of random forests.
 The ensemble of decision trees created from
the training data is then used to classify the test
data.

Results
 Defining overall classification accuracy as
simply:

𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

I found that overall accuracy hovers around
85% using 20 features and 70% training data
across multiple runs. However, because the
classes are uneven, overall classification
accuracy as defined above may not be the best
indicator of classification results.
 In order to get a better understanding of
accuracy, I also find the number of true
positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) per
class. Using these, I calculated the per class
precision, recall, f-score, and acc (redefined).
They are described as follows:

𝑎𝑐𝑐 =
(𝑇𝑃 + 𝑇𝑁)
(𝑃 + 𝑁)

,where P and N are the total number of positives
and negatives per class.
 Precision, recall, and fscore are by the
traditional definitions:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝑇𝑁)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

𝑓𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

 The results are summarized in Table 2. The
average of each is the per class result multiplied
by the number of test samples for that class over
the total number of test samples.

Table 2. Accuracy results by class

Class Acc Precision Recall F-score
01 0.8828 0.8333 0.9589 0.8917
02 0.9586 0.8000 0.6667 0.7273
03 0.9862 0.7143 1.0000 0.8333
04 1.0000 1.0000 1.0000 1.0000
05 0.9793 1.0000 0.5000 0.6667
06 0.9655 1.0000 0.4444 0.6154
07 1.0000 1.0000 1.0000 1.0000
08 1.0000 1.0000 1.0000 1.0000
09 1.0000 1.0000 1.0000 1.0000
10 0.9655 0.8571 0.9000 0.8780
11 NaN NaN NaN NaN
12 NaN NaN NaN NaN
13 NaN NaN NaN NaN
14 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000 1.0000
16 0.9724 1.0000 0.4286 0.6000
avg 0.9280 0.8700 0.8552 0.8434

Figure 4 shows the confusion matrix of how the
classes are being misclassified:

Discussion
 While the majority of classes have high
accuracy scores, the lowest accuracy scores
occur in classes 5, 6, and 16. These three classes
all have low recall scores, meaning that out of
all the patients who actually have the disease as
marked by 5, 6, and 16, this algorithm has
trouble classifying them as their respective
classes. In fact, out of the 7 test cases that are in
class 16 for the confusion matrix above, more

are classified as class 1 rather than class 16 (4
vs 3). A large portion of misclassifications also
all have the similarity that they are classified as
1 when the actual target class is something else.

Fig. 4. Confusion matrix. For each class, this shows
what the test sample actually is (target class) versus
what it is being classified as (output class). Proper
classifications are shown in the diagonal, and the
overall accuracy rate is shown on the bottom right hand
corner.

Conclusions
 For this particular dataset, a random forests
training algorithm provides the best
classification results across all 16 classes. Due
to the skewed nature of the original dataset,
resampling and re-skewing the data to give
more weight to underrepresented classes during
training significantly increased all overall
accuracy metrics.
 The accuracy scores presented here are
comparable to other learning algorithms on the
same dataset as presented in literature. Typical
accuracy metrics range between 70% - 90%, as
summarized in Ozcift’s paper [2].

Future Work
 There are several things that could be done as
future work.

 First, out of the 279 features presented, many
are correlated. Therefore, it is possible to
explore dimensionality reduction algorithms,
although in this case, the number of training
samples exceeded the number of features
present. However, there are other things that
could be done because much of the data is
correlated. For example, rather than viewing
features like height and weight as separate
attributes, it might be reasonable to combine
them and present the pair as a weight-height
ratio. Similar things could also be done with the
ECG data.
 Second, although not explored in this project,
a cost matrix is also something that could be
very useful to a problem like arrhythmia
classification. The cost of misclassifying a sick
patient as healthy, or misclassifying a sick
patient as having an incorrect type of sickness,
might be greater than the cost of misclassifying
a healthy individual as sick. The medical
implications of various types of
misclassifications should be taken into account
when designing such learning algorithms.
Furthermore, implementing a cost matrix might
also prove to be beneficial in improving
accuracy, as placing a greater cost on often
misclassified classes could improve accuracy
results for those classes.

References

[1] Bache, K. & Lichman, M. (2013). UCI
Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information
and Computer Science.

[2] Akin Ozcift, "Random forests ensemble
classifier trained with data resampling strategy
to improve cardiac arrhythmia diagnosis."
Computers in Biology and Medicine 41, 2011.

Note
This work was done partly in collaboration with
Lee Tanenbaum. We submitted the project
proposal and mid-project report together.
However, because we each largely worked on
our own standalone pieces of code and found it

too hard to integrate in the end, we decided to
write separate final reports. I have previously
emailed the CS229 staff about this.

